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Abstract: The classification of skin cancer typically relies on colour and inten-
sity images as input to a variety of rule and checklist based diagnosis. Computer
vision techniques can be applied to enhance such image data into representative
features, in order to then automate the detection process by machine learning
methods. In general, these approaches do not take into account any information
that could additionally be provided by depth and the resulting three dimensional
surface structure description of the skin area in question.

A dense stereo photogrammetry technique is used to gain both colour and depth
based information from skin lesions. A system is developed to investigate the
usefulness of depth information as an additional modality for enhanced derma-
tological classification. The available channels of information are converted and
processed to enhance features, distributions within the data are investigated and
classification experiments are performed with a Bayesian classifier delivering clas-
sification accuracies of 77.3% 83.7%.
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1. Introduction

The classification of skin cancer has conventionally relied on colour and inten-
sity images as input to a variety of rule and checklist based diagnosis. Various
computer vision techniques can be applied to enhance such image data into more
representative features, in order to then automate the detection process by pat-
tern recognition and machine learning methods.

In general, these approaches do not take into account any information that could
additionally be provided by depth and the resulting three dimensional surface
structure description of the skin area in question.

In this project we investigate whether the inclusion of depth based information
can infact help to distinguish between various types of skin cancer and other der-
matological lesion classes. We aim to show that the actual skin surface structure
may provide a valuable source of features on which to base classification. Our
hypotheses relating to this goal are detailed and stated explicitly in Section 1.2.

The project involves the conversion and processing of the available channels of
information to enhance features, the analysis of any variations and distributions
within the data to help differentiate between classes and evaluating the classi-
fication performance that depth based features allow. We use a dense stereo
photogrammetry technique to gain both colour images and depth based informa-
tion in what can be considered a new application of a well known method.

To summarise, the benefits of using surface shape information for automated skin
cancer classification are investigated in this project.

1.1 Project overview

The core components of the project involve making use of preprocessing tech-
niques to enhance image data, defining and constructing numerical features that
are descriptive of skin images and building a skin image classification system for
evaluating the constructed features.

Primarily, we looked at developing and selecting representative features of the
collected image data that attempt to take advantage of the available depth based
information. This depth based information is provided by our novel data capture
technique. Secondly, a classification system was built to assess the usefulness of
the selected features.

The intended outcome of the work is to provide evidence that image features
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2 1. INTRODUCTION

which make use of depth based information are indeed useful for the purpose of
skin cancer classification.

1.2 Hypotheses of the project

We now explicitly state the claims made in our work and describe the evidence
that must be provided to support them. The primary goal of the project is to
investigate any additional benefits that depth information might provide over
standard image data for skin cancer classification. This aim can be encapsulated
by the following testable statement which includes a prediction.

1.2.1 Main hypothesis

A classification system using a combination of standard and depth
based image features is more successful at the task of classifying skin
lesion images than a system which uses standard image features alone.

The testing of this hypothesis will involve comparing our baseline classification
system (using only standard image features as defined in Section 2.2) with a sys-
tem that makes use of additional depth and surface structure based information
when classifying skin images. The principal dimensions on which these systems
are to be compared are that of classification accuracy and cost (these metrics are
defined formally in Sections 7.1.2.1 and 7.1.2.2). The hypothesis can therefore be
considered a claim about the proposed systems along the scientific behavioural
dimension of correctness.

The required evidence for this claim is experimental in nature. We aim to pro-
duce image classification results that exhibit a significantly better classification
accuracy or minimum cost for the system that makes use of both depth and
standard features compared to the baseline system which makes use of standard
features alone.

1.3 Structure of the document

To achieve the proposed goals of the project we first carry out a review of related
research in the field of automated skin cancer classification which can be found in
Chapter 2. Following this, the data made use of in this project and the equipment
needed to provide it are described in Chapter 3.
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To present evidence in support of our hypothesis we build a skin lesion classifica-
tion system capable of preprocessing and extracting features from the provided
data. We then define and apply classification rules to derive a classifier from the
sample data. The methodology employed by these components of the system and
details of their implementation can be found in Chapters 4, 5 and 6.

The results obtained by testing the implemented system are quoted and analysed
in Chapter 7 and the concluding Chapter contains discussion and recommenda-
tions relating to the work carried out.
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2. Related research

There exists a fairly well established body of work related to the problem of
automated skin cancer classification. It has been nearly twenty years since the
first mention was made of utilising the computer as a tool for assisting clinicians
in diagnosing skin lesions [7]. Automated Melanoma diagnosis in particular, is a
relevant problem which has been extensively addressed by a large body of work
and is a well studied problem in the literature [11, 19].

Typically, images of skin lesions are analysed by computer to capture certain
features (expressed as numeric values) thought to be characteristic of malignancy.
These features can then be used to classify the image and report a diagnosis. An
overview of the main techniques and approaches associated with this area of
research follows.

2.1 Data capture

2.1.1 Standard image capture techniques

Pre 1995, the most popular method of clinical diagnosis was examination with the
naked eye by an experienced clinician. Most computer based methods therefore,
also used “clinical view” (naked-eye images) as input for their systems in this early
period [20, 36]. Post 1995, what can be considered one of the major developments
in the automated diagnosis of skin cancer was the advent of the Epiluminescent
Microscopy technique.

Epiluminescent Microscopy (also known as ELM, Dermatoscopy and Skin Surface
Microscopy) began to gain popularity as a technique for diagnosing melanoma.
This is a noninvasive technique that involves applying a low power television
microscope and light to a glass slide covering mineral oil on the surface of a
skin lesion. The goal is to make the epidermis translucent, enabling more visual
information to be gathered than from naked-eye images alone. From this period
onwards, reports about ELM research in this area became more common, and
research into ELM based automated classification systems became increasingly
popular [8, 34].

The techniques outlined above can be considered the most widely used image cap-
ture approaches for the purpose of skin cancer classification and are the standard
alternatives to the method used in this project. The main difference between

5



6 2. RELATED RESEARCH

the discussed techniques and those employed in this project is that the standard
techniques do not directly capture any depth information from the image scene.

2.1.2 Alternative data capture approaches

In the work surveyed, only one other independent system has been identified that
attempts to utilise depth data as a modality for image acquisition. This is the
DERMA system of Callieri et al [10].

The main difference between the DERMA system and the work proposed here is
the technique by which the depth data is acquired. The DERMA system is based
on the laser scanning of a subject to obtain 3D and aligned colour information
while our work makes use of dense stereo photogrammetry (see Section 3.1 for
an outline of our technique).

A further noted difference is that the primary intended use of the DERMA system
is to measure and assess the time evolution of chronic skin wounds. In contrast,
the main purpose of our system is as a tool with which to assess the suitability of
depth based image features for lesion classification purposes. For this reason, a
direct comparison is deemed an unsuitable measure of the success of this project.

An alternative approach with respect to extracting novel types of information
(other than depth based) is explored in [35] where Raman spectra1 are obtained
by pointing a laser beam at the skin sample to be classified. The laser beam
excites molecules in the sample and the frequency shifts of the reflected spectra
are interpreted as functions of the type of molecules in the sample, thus the
Raman spectra can be used to obtain useful information on the different chemical
compounds in the examined skin. This feature information is then used with
machine learning techniques for classification purposes.

2.2 Feature derivation and image analysis

In the majority of classification systems found in the literature, images are anal-
ysed with algorithms derived from criteria provided by experts. The most popular
example is the well-known ABCD criteria proposed by Friedman et al [30]. The
ABCD rule represents the asymmetry, border structure, variegated colour, and
diameter of the skin lesion and define the basis for a diagnosis by a dermatologist.

1A spectroscopic technique used in condensed matter physics and chemistry to study vibra-
tional modes in a system. Vibrational information is specific to chemical bonds in molecules
and provides a fingerprint by which a particular molecule can be identified.
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The main reason for the popularity of this criteria appears to be the ease with
which it is reproduced algorithmically, rather than its clinical usefulness. There
are a number of examples of systems which make use of features derived in this
way which report very good results [18, 19].

Part of our work involves reproducing some of these “standard” features derived
from regular colour images such that they may then serve as a baseline for com-
parison with the depth based features that we define (cf. Chapter 5).

Some preliminary work [26, 31] has been carried out with the stereo photogram-
metry camera rig made use of in this project. In his Masters Thesis Ravindranath
defines a number of pixel colour and depth features (means and variations) which
were extracted from the image data and were used with a Bayes classifier to dis-
tinguish between lesion classes. Ravindranath’s Thesis is summarised in Section
2.4. This previous work can be considered directly related to our project and
a basis which can be extended, primarily by exploring the benefit of extracting
many more and richer properties from the data. It is in this way that our work
can be regarded as building upon existing work in the field.

2.3 Classification technique

During the survey of the related literature, it was noted that classification tech-
niques tend to vary from paper to paper. Example techniques include expert
systems, discriminant analysis, decision trees, artificial neural networks, logistic
regression and Bayesian learning based methods. A summary of classification
techniques used and the results achieved was compiled by Day et al in [17]. This
information is reproduced here in Table 2.1.

This lack of coordinated effort and standard classification technique is what Hall
et al [20] term “directing computer technology at this problem in an ad hoc
fashion”. The variety of applied classification techniques in the field is a factor
that would make direct and scientific comparison to other systems on the strength
of our depth based feature set difficult.

2.4 Previous work with 3D depth data

Ravindranath [31] designed and evaluated a skin spot classification system that
made use of both intensity and 3D range data captured from the same equipment
that is used in this project (see Section 3.1 for hardware specification). Within
the surveyed literature, this can be considered the most closely related work to
that which was carried out in this project. For this reason, we provide a brief
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Author Year Segmentation

technique

Classifier Number of

algorithms

Sens. Spec. Number of

images

Image Type

Dhawan 1988 Automatic:
partially
described

Expert
system

18: partially
described 20:
patient data

Work in
progress

Work in
progress

Not available ’Nevoscope’
images

Green et al. 1991 Automatic:
partial
description

Discriminant
analysis

11: described 80% 72% 70/5 Digitised
video images

Cascinelli et
al.

1992 Automatic:
not described

Thresholding
and feature
summation

8: partially
described

83% 60% 169/45 train,
44/10 test

TV camera
mag: ×3

Schindewolf
et al.

1992 Automatic:
described

Decision
trees
(CART)

Unknown.
described in
general

94% 88% 353/215 Digitised
slides mag:
×0.5

Bostock et
al.

1993 See (26) Artificial
neural
network
(ANN)

Shape only.
described in
(26)

92% 68% 124/68
62/37 train
62/31 test

See (26)

Ercal et al. 1994A Hand drawn ANN Exp 1: 14*
Exp 2: 8 de-
scribed

Exp 1a: 80%
Exp 1b: 86%
Exp 2a: 74%
Exp 2b: 82%

Exp 1: 86%
Exp 1b: 86%
Exp 2a: 84%
Exp 2b: 83%

Exp A:
240/120
Exp B:
216/108

Digitised
slides

Green et al. 1994 Automatic:
partially
described

Discriminant
analysis

17: described 83% 82% 164/18 CCD video
camera

Ercal et al. 1994B Hand drawn ANNs
and Fuzzy
inference

17: described 96% 62% 399/135 Digitised
slides

Andreassi et
al.

1995 Automatic:
not described

Not applica-
ble

8: described Unknown Unknown 430/50 Digitised
video images

Hintz-
Madsen et
al.

1996 Unknown ANN 21: colour
and texture
not described

59% of the
test set was
classified cor-
rectly

180/60 train,
60 test (un-
known distri-
bution)

180/60 train
60 test (un-
known distri-
bution)

Clinical view
digitised
photographs

Menzies et
al.

1997 Automatic:
not described

Statistical:
logistic
regression

Unknown:
not de-
scribed,
commercial

93% 67% 170/75 Digitised
dermaphot

Gutkowicz-
Krusin et
al.

1997 Automatic:
described

Statistical:
linear
classifier

13: partially
described

All 100% * Exp 1: 92%
Exp 2: 92%
Exp 3: 61%

140/30
Exp1&2:
76/24
Exp 3: train
76/25
test 28/5 **

Digitised
ELM slides
- Only MM
and AMN

Seidenari et
al.

1998 Automatic:
not described

Statistical:
discriminant
analysis

21: described 93% 95% 917/65
used in
study 90/31
compared
to human
diagnosis

Video micro-
scope. Mag:
×10-50

Bischof et al. 1998 Automatic:
partially
described

Decision tree
(RPART)

Unknown:
not de-
scribed,
commercial

89-100% † 80-84% 221/45 ELM video
camera

Ravindranath
‡

2005 Hand drawn Naive Bayes 7: described Exp 1: 50%
of the test set
was classified
correctly

Exp 2:
81.81% -
87.5% of the
test set was
classified
correctly

Exp 2:
train: x/66
(unknown
distribution)
test: 11/18

Digitsed im-
ages & 3D
range data

* The linear classifier was constrained to detect 100% of melanoma.

** Of the three experiments, only Experiment 3 used a separate training set.

† Re-substitution gave 100%, whilst cross-validation gave 89%. They state the likely value is somewhere between the two.

‡ This work was not present in the summary by Day et al. Included here by the author.

Table 2.1: Summary of related research. Source: [17]
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review and discussion of the system designed and evaluated by Ravindranath and
the classification results obtained.

The system described was used to extract a total of 17 features from a dataset
of 84 images of skin lesions originating from seven distinct classes. The classes of
skin lesion studied were Basel Cell Carcinoma, Melanoma, Squamous Cell Car-
cinoma, Melanocytic Nevus, Dermatofibroma, Seborrhoeic Keratosis and Cherry
Nevus. The data set was provided by the Department of Dermatology at the Uni-
versity of Edinburgh. The features that were evaluated included colour metrics,
texture metrics and shape metrics which were derived from the intensity (colour)
data and a single depth based feature, maximum spot height with respect to the
surrounding skin surface, derived from the 3D range data. A second range data
feature was proposed but not implemented, the processing time required for 3D
feature extraction from the high resolution (3456×2304) image data and time
constraints were cited as the reasons for not implementing this second range data
based feature. The features that were implemented included means and variation
of the RGB and HSV channels of each image, area, eccentricity, perimeter and
maximum height values for each data sample.

The variation of the extracted features were analysed across each lesion class
and a subset of six features thought to encapsulate the highest discriminatory
power were retained and then used with a Naive Bayes Classifier for the purpose
of classifying the skin lesions. The full set of 17 features were not used for
classification purposes primarily due to the lack of available samples for some of
the represented skin lesion classes. For example only six samples were available
for the classes ’Melanoma’, ’Cherry Nevus’ and ’Dermatofibroma’.

To explore the usefulness of the depth based feature for classification, two systems
were trained. The first used six intensity features while the second made use of
five of these intensity features and substituted the sixth feature that exhibited
the least variation within the training samples for the depth based feature. The
classifiers were both trained on 66 lesion samples and tested on the remaining
18 samples. Both systems were then evaluated based on classification accuracy.
The classification results of these seven class experiments did not differ between
the two systems and both classifiers were shown to classify nine of the 18 test
images correctly.

On inspection of the classification results provided, it is noted that both systems
were able to classify all test samples belonging to Melanocytic Nevus and Basel
Cell Carcinoma correctly, and all other test samples were misclassified as one of
these two classes. It was proposed by the author that this trend of correctly and
incorrectly classified samples may have been due to the fact that the two classes
mentioned had the largest amount of training data available, with at least 14
samples from each class in the training set and therefore also the largest apriori
probabilities.
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With both of the trained systems making identical misclassifications and there-
fore returning the same accuracy results, it was noted that no proof to support
the hypothesis that “the use of depth information may be a significant discrim-
inatory feature for skin spot classification” could be provided. However, Ravin-
dranath suggests that if there existed sufficient training data for each of the
seven classes, the classifier would be able to exhibit an accurate classification
performance across all classes. This claim can be partially substantiated by a
second experiment that divided the training and testing data samples into just
two classes “Benign” and “Malignant”, thus providing more training data for
each class. In this second experiment, the system was able to achieve an 87.5%
accuracy for the class of benign samples and 81.81% for malignant samples.

This project attempts to build on the previous work carried out in [31] primarily
by extracting more and richer intensity and depth based properties from the
available data set and by evaluating classifiers on accuracy and further metrics.
By reducing the resolution of image data (by a cropping technique), we have
aimed to partially circumvent the problem of high feature extraction times. Due
to the fact that several hundred more data samples have been collected since this
work was carried out, we also attempt to explore the achievable classification
performance on a realistic data set.

2.5 Summary

The proposed technique of using depth based information for skin image classi-
fication can be regarded as a fairly novel approach. Some related previous work
with the image capture device has been carried out by Ravindranath. With
respect to the surveyed material, only one other example of independent work
making use of depth information was found.

As previously noted, the ad hoc direction and reporting of research in this field
makes direct system comparison difficult and “reinvention of the wheel” within
the field likely [17]. A variety of different techniques are used for image capture,
image analysis and classification.

In general, image preprocessing techniques tend to be developed specifically for
the data set being worked with. There appears to be no evidence of a standard
approach and techniques tend not to be fully detailed, making reproduction of
research results difficult. The lack of a standard set of test images is a noted
difficulty with research in this area.

In contrast to this, during their survey of the field Day et al [17] conclude that
feature derivation and image analysis algorithms tend to be well described in
general. Unfortunately, in some cases the basic bench mark of the research being
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replicable is not met. This failure may be due to commercial interests (e.g.
Bischof et al. [8]).
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3. Data and equipment

3.1 Stereo photogrammetry equipment

The intensity images and depth data is captured via a dense stereo photogram-
metry technique. The dense stereo (depth) data is recovered from two simultane-
ously captured images via stereo photogrammetry matching software which is an
extended version of PSPTMtechnology, an off-the-shelf innovative product from
Dimensional Imaging (http://www.di3d.com/). The core technology of the prod-
uct is summarised in [1]. The basis of this reconstruction is a multi-resolution
algorithm, an earlier version of which is described in [2].

This technique has the benefits over previous medical skin research that uses
laser scanning (namely the DERMA system discussed in Section 2.1.2) of in-
stantaneous capture and perfect 1:1 alignment of colour information to z-depth.
Instantaneous capture does not produce artifacts due to subject movement and
the method can be considered non-invasive and completely safe since it uses stan-
dard photographic equipment.

The method allows us to capture accurate 3D data at a very fine scale. The
data was captured by a stereo capture rig constructed of two 8.0 MPixel Canon
EOS 350D cameras, calibrated and using the maximum level of magnification
supported by the standard EF-S lens (0.28m closest focus distance). A ring flash
is employed for consistent lighting of the subject and a Macbeth colour chart is
attached to the perimeter of the capture area. A picture of the stereo camera rig
can be found in Figure 3.1.

The capture quality and scale of the depth images1 have been measured at a
z-noise of 0.028 microns deviation from the plane and x,y pixel separation values
of 0.033mm and 0.031mm respectively. This enables extremely close-up stereo
photogrammetry to capture the micro scale 3D structure present in the skin
samples. The depth information represents the z-axis distance from the sensor.
These depth values are then used to provide an extra modality for classification
and enhanced visualisation.

1As measured by X. Li, a PhD student within the IPAB institute in the School of Informatics,
The University of Edinburgh.

13
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Figure 3.1: Stereo camera rig. Original image due to [37]

3.2 Data description

The resultant data produced by the equipment described in Section 3.1 is in
the form of a standard intensity true colour RGB image of each skin lesion and
the accompanying range data in the form of matrix data structures containing
the z-axis distances of the skin surfaces from the sensor. The original intensity
images have a spatial resolution of 3456×2304 pixels with the inter-pixel spac-
ing ≈ 25pixel/mm. A Macbeth chart is part of the capture equipment but no
normalisation of colour is performed during the imaging process, partly due to
the reportedly ineffective results of colour normalisation cited by [31]. Example
intensity and depth data captured by the stereo equipment can be seen in Figure
3.3.

The skin lesion data used in this project has been provided by the Department
of Dermatology at the University of Edinburgh. Overall 378 skin lesion images
categorised into twelve original classes were available to us. These were cate-
gorised as Actinic keratosis, Basal cell carcinoma, Comedone, Dermatofibroma,
Haemagioma, Melanoma, Pyogenic granuloma, Seborrheic keratosis, Squamous
cell carcinoma, Benign melanocytic naevus (normal moles), Viral wart and Blue
naevus. All images were captured during clinical examinations by the capture
system in a working dermatology clinic. The ground truth for the lesion classes
was generated by clinical diagnosis from an expert from the Department of Der-
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Figure 3.2: Intensity and depth data recovered from a skin lesion sample

matology.

The number of samples per class was not evenly distributed, leaving some of the
classes in the original data set with extremely few samples for the purposes of
model building and testing (for example there are only two specimens of Come-
done in the data set and only six Viral warts). Five classes of skin lesion from
this original set of twelve were deemed to have enough samples available with
which to perform meaningful experimentation. These were Actinic keratosis
(AK), Basal cell carcinoma (BCC), Seborrheic keratosis (SK), Squamous cell
carcinoma (SCC) and Benign melanocytic naevus (ML) giving a total of 234 us-
able intensity images and accompanying range data for the purposes of training
and testing the system. These five classes were used throughout the remainder
of this project and the number of available samples for each class are found in
Table 3.1

Lesion class Number of available samples
AK 11
BCC 65
ML 61
SCC 25
SK 72

Table 3.1: Skin lesion classes and occurrence frequencies

3.3 Visual skin lesion characteristics

Here we give a brief overview of the visual characteristics for each of the five
classes of skin lesion used for experimentation in this project. A survey of any
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notable or distinguishing visual or structural features of each class may help
to provide insight into the feature selection (Chapter five) and Classification
(Chapter six) stages of the project.

Skin lesions are typically subdivided into Malignant and Benign categories. Ma-
lignant is the medical term used to describe a severe and progressively worsening
disease and as such, Malignant lesions can be thought of as highly dangerous.
Conversely, Benign lesions are non-cancerous and therefore provide significantly
lower risk to patients. Of the five classes examined, Basel cell carcinoma and
Squamous cell carcinoma are Malignant growths, Seborrheic keratosis and Nor-
mal moles are regarded as Benign and Actinic keratosis is typically classed as a
precancerous growth that may turn Malignant in the future [3]. Typical visual
characteristics for each of the five classes according to the Skin Cancer Founda-
tion [3] are listed below. Some further visual symptoms listed are due to [31]
and originate from the expert opinion of a dermatologist who has collaborated
on work related to this project

3.3.1 Basel cell carcinoma

The most common form of skin cancer, Basal Cell Carcinoma is a malignant
tumour that typically occurs in the epidermis. The Skin Cancer Foundation lists
five typical characteristics of BCC as:

• Persistent, non-healing open sore that bleeds, oozes or crusts and remains
open.

• Reddish patch or irritated area.

• A shiny bump or nodule that may appear pearly or translucent and is often
red or white. May also be tan, black or brown.

• Pink, slightly elevated rolled borders with crusted indentation in the centre.

• Scar-like areas that are white, yellow or waxy. Often with poorly defined
borders.

Expert opinion affords the further information that these growths typically result
in the formation of a “crater” like structure with the surrounding spot slightly
elevated and that the skin surface may appear broken.

3.3.2 Squamous cell carcinoma

The second most common form of skin cancer, this growth arises in the squamous
cells that are found in the upper layer of the skin. Common characteristics for
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this type of growth include:

• Scaly red patches with irregular borders.

• A wart-like or open sore appearance that is likely to crust or bleed.

• An elevated growth with a central depression or crater like appearance.

Further to these characteristics, it was noted that these lesions may appear to be
relatively large in size and again exhibit a “crater like” appearance with raised
surroundings and a central depression.

3.3.3 Seborrheic keratosis

This benign skin growth can be considered very common among people over 40
years of age. Typical features of these lesions are

• Resemble flattened or raised warts.

• Exhibit a variety of colours, from pink or yellow through to brown or black.

• Often described as having a “pasted-on” appearance due to the fact that
only the top layers of the epidermis are involved.

3.3.4 Benign melanocytic naevus

More commonly known as birth marks or moles, this class of usually harmless
skin lesion is very common and may be present at birth but more usually begin
to grow during childhood (although new ones can appear at any age, sometimes
in crops). Visually, these lesions tend to be:

• Dark brown or black in colour (due to presence of high melanin concentra-
tion).

• Generally circular or oval in shape.

• Typically small in size but with noted exceptions.

Further to the characteristics noted by the Skin Cancer Foundation, it is sug-
gested that Melanocytic nevi may be flat or slightly raised on the surface and
portray a relatively smooth surface texture.
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3.3.5 Actinic keratosis

As previously noted, this lesion class may be thought of as a pre-cancer and is
often the result of prolonged exposure to sunlight. Characteristic symptoms of
this class are noted as:

• May be small in size in initial stages, but grows gradually.

• Appears to be crusty, scaly or bumpy on the skin surface.

• Colour may vary and is typically tan, pink red or a combination of these.

• Tendency to become inflamed with surrounding redness or bleeding.

Further characteristics highlighted by a dermatological expert include a reason-
ably small size and often the lesion will contain a white keratin material.

Figure 3.3: Sample images of skin lesions from the provided data set.
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3.4 Discussion

The provided data set has a number of noted advantages and disadvantages.
Since the data is captured from a real clinical environment, we believe that the
examples are highly representative of the various classes of skin cancer both in
terms of variation between samples of the same class and ratios with which various
classes occur in a clinical setting (with the exception of the ML class which it
was thought may be over represented). This will help to ensure our generality of
testing. Using a real patient clinic image set also provides an independent and
challenging source of test data.

The main drawbacks to this source of data are the relatively low number of total
samples and the fact that these samples are not shared examples of the field,
making it difficult for us to directly compare our system to related work or have
anyone independently reproduce our results. The lack of a definitive set of shared
examples in this field was highlighted in Section 2. Also, since the data set is
not synthetic we are not able to systematically vary any domain characteristics
of interest. Finally we note that not all diagnoses were verified by pathology, so
there may be some labelling errors in the training data.
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4. System methodology and
implementation

The principal goal of the project was to investigate the benefits of surface shape
information when classifying images of skin cancer. Towards this goal, a system
for the processing, analysis and classification of skin images was developed. This
section outlines the main methodologies and processes made use of by our system.

4.1 Preprocessing

4.1.1 Range data preprocessing

It was noted that the lesion samples were captured from a variety of curved body
surfaces. On inspection, this often caused the presence of interesting local surface
texture to be obscured by global structure. To correct for global surface structure,
the range data representing the skin surface was rotated to be approximately
perpendicular to the viewer. The technique used to achieve this is described
below.

4.1.2 Global orientation

The core idea involves rotating the global surface until it is facing the viewer.
We assume the viewer to be directly above the skin surface i.e. in the direction
[0 0 1]T . This involves rotating each pixel as follows:

1. Let each pixel be the vector p(i, j) = (x(i, j) , y(i, j) , z(i, j))

2. Rotate each point as p′(i, j) = R ·p(i, j) where R is an appropriate rotation
matrix

The rotation matrix R is found for each sample by constructing a 3D basis for
the surface consisting of the orthonormal vectors {n, q, r} where n is the global
surface normal to an estimated plane fitted to the observed data and q, r are
chosen such that n · q = n · r = q · r = 0.

We find n by estimating the global surface normal to the least squares best-
fitting plane through the points on the surface corresponding to normal skin (see
Section 4.3.1 for normal skin definition). This can be regarded as a first order

21
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approximation to the surface normal direction at the central point of the sur-
face. This normal vector can be conveniently found by constructing appropriate
matrices containing the surface point data and making use of Singular Value
Decomposition as follows.

Define matrix M to contain the surface x y z data such that:

M =




x1 x2 ... xn

y1 y2 ... yn

z1 z2 ... zn

1 1 ... 1




Let S = M ·MT

Components of the surface normal to the estimated plane can then be derived
from the fourth column of the matrix V where:

svd(S) = [U,D, V ]

n = [v1,4 v2,4 v3,4]
T

Finally, we are able to solve for the rotation matrix R using:

R = [q r n]−1

Two interesting problems of note here were that a matrix R might be found that
also implements a mirror image or a matrix which resulted in the lesion sample
being inverted in the z-axis. The first of these problems can be overcome by
comparing the signs of a vector triple product (4.1). If the signs are opposite,
then q is replaced with −q when solving for R. A solution to the invertion
problem is to simply check the sign of the z component of the normal vector n
and invert it if it is found to be negative.

sign(([1 0 0]T × [0 1 0]T ) · [0 0 1]T ) = sign((R · [1 0 0]T ×R · [0 1 0]T ) ·R · [0 0 1]T )
(4.1)

Applying the rotation R to each point results in the corrected depth channel of
the data points for each sample. Plots of the data before and after these global
rotations are applied are shown in Figures 4.1 and 4.2.
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Figure 4.1: Original depth data for three lesion samples

Figure 4.2: Depth data after global rotation transform

4.2 Image sample selection and cropping

In some instances, the data set contained multiple intensity images and depth
data samples pertaining to the same skin lesion. In such cases, a method was
needed to select the best available sample. To this end, the depth data was
visualised in an attempt to select the optimal sample, in terms of the quality
of the data captured. The main technique used for visualisation was to derive
Cosine Shaded images from the depth data which proved to be useful in assessing
the quality of the sample. This technique is detailed in the following section.

Some patient samples were discarded completely at this early stage as upon
viewing the Cosine Shaded visualisation it was clear that the 3D image capture
process had not performed correctly or had been heavily affected by a profusion
of hair follicles which would tend to disrupt the stereo recovery process.
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Figure 4.3: Intensity images

4.2.1 Cosine Shading

Cosine Shading is a simple shading algorithm commonly used in visualisation
software. The algorithm utilises the cosine of the angle θ between the surface
normal vector ns at each point in the image s and a normalised light source
vector I in order to calculate an estimation of the brightness at this point on
the surface. Viewing the skin surfaces as a set of brightness values in this form
proved helpful in illustrating the underlying structure present in the depth data.
The cosine shaded images produced in this project assumed that the light source
was positioned directly above the image therefore I = [0 0 1]T and the surface
normal to each point was calculated using a N × N window surrounding the
point using the least squares plane estimation method described previously in
Section 4.1.1. Experimentally, values of N = 3 were found to produce the most
descriptive images. The brightness value at each pixel Is is then calculated as
in Equation (4.2). Examples of colour lesion image samples and cosine shaded
images produced from their corresponding range data are shown in Figures 4.3
and 4.4.

Is = I · ns = |I||ns|cos θ (4.2)

Figure 4.3 displays two examples of skin samples from the Mole class. It can
be noted in Figure 4.4 that the Cosine Shaded image produced by sample P126
can be seen to be fairly flat and uniform. This would suggest that there is not
a lot of descriptive information available from the depth data for this sample.
Sample P103 on the other hand exhibits noticeable three dimensional structure
in the Cosine Shaded image and is an example of a good specimen with respect
to the collected range data. The presence or lack of descriptive surface structure
is something that would otherwise prove difficult to deduce from the intensity
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Figure 4.4: Corresponding Cosine Shaded images

images alone.

4.2.2 Resolution cropping

As previously mentioned the original intensity images were captured at a resolu-
tion of 3456×2304. In a pre-emptive effort to diminish the computational expense
of extracting features from high resolution image data, both the intensity and
depth images were cropped at this stage to a size of typically ∼700×700 pixels,
retaining the main area of interest (the skin lesion) and an area of surrounding
skin.

4.3 Image segmentation

Segmentation refers to the process of extracting meaningful regions out from the
image background. The initial preprocessing step for the data in this project
involves segmenting the lesion in each image from the background (skin) to aid
in the following feature extraction steps. Accurate segmentation of the regions
of interest can be considered a crucial step in the skin spot classification process.

Traditionally, automated segmentation techniques can be categorised into two
classes: those that employ region-finding algorithms versus those that employ
contour-detection algorithms. Most classical region-finding algorithms involve
partitioning a grey level histogram in such a way that appropriate thresholds
for segmentation can be easily found. However, studies indicate that for complex
images such as those of skin tissue structure, simple thresholding techniques based
on a globally determined values may not work well [15].
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Since the focus of this project was on defining features and classification, we
chose to perform the segmentation task manually with a free hand tool which
was created for the purposes of the project.

Manual segmentation may be thought of as a highly reliable segmentation method,
especially when performed by a dermatologist or similar domain expert. The
caveat here is that segmenting a large collection of images by hand can be a time
consuming (and rather laborious!) process. It is noted that successful solutions
to the problem of automated segmentation also exist in this and related domains.
For example Ganster et al report favourable results using adaptive local thresh-
olding methods in [19] for the purpose of segmenting ELM based dermatological
images.

4.3.1 Image segmentation tool

An image segmentation tool was designed and implemented for the purpose of
manual segmentation. The tool loads each sample intensity image and displays
it. The user is then able to select a set of (x, y) control points on the image which
are used to define the perimeter of the lesion and other areas of interest. The
polygon defined by connecting these control points is then used to produce three
binary masks corresponding to areas of the image containing the lesion, a patch
of “normal skin” and a small region surrounding the lesion defined as “uncer-
tain” which typically represents an ambiguous zone found at the normal skin /
lesion border. This divides the point/pixel data into three sets. If an automated
segmentation technique were being used, selection can be additionally performed
by a specified amount of erosion (using standard morphological operators), the
effects of which are to eliminate any ambiguous “uncertain” points. It is with our
hand cropped “uncertain” mask that we attempt to simulate that effect in this
project. These binary masks can then be used to selectively extract information
from the defined areas of interest in both the intensity and depth data. The
segmentation tool and sample output can be found in Figures 4.5 and 4.6.

4.4 Summary

The previous series of sequential operations and preprocessing techniques are
carried out in an attempt to aid us when extracting meaningful patterns and
features that may be present in the data. After performing the global surface
orientation, cropping and segmenting the intensity data, we are in a position
where we are able to extract potentially useful properties with which we can
describe the various classes of skin lesion.
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Figure 4.5: Image segmentation tool

Figure 4.6: Examples of the “uncertain” (A), skin lesion (B) and “normal skin”
(C) masked areas of a sample lesion
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5. Colour and depth feature
extraction

The project used a number of different parameters from the intensity and depth
data in the Bayesian classifier described in chapter six. To some extent, these
features try to reflect the parameters used in medical diagnosis. Some example
feature categories are size (area, perimeter, polar measures and bounding rectan-
gle) and shape (formfactor, roundness, compactness) [32] and colour (minimum,
maximum, average and variance of image RGB channels). The novel features we
calculate are based on the image depth data. Example depth features include spot
height, average spot roughness and peak and pit densities. These features are
then used as input to machine learning techniques for the purpose of image clas-
sification. Here we formally define the features implemented, describe how they
were extracted from the data and examine their variance and class distributions
within the available data set.

5.1 Feature: Mean spot height

One of the initial features derived from the depth data is what we define as Mean
spot height. This feature was defined in an attempt to represent the amount
that a skin lesion protrudes from the surface in relation to the surrounding skin.
It was predicted that a feature representing the average height of a skin lesion
would prove to be descriptive given that a number of physical lesion properties
(cf. Section 3.3) are height related (e.g. the noted “elevated growth” and “crater
like” characteristics of SCC).

5.1.1 Feature definition

Calculating this feature involves taking the mean z value of depth data points
residing inside the set of points S belonging to the skin lesion, as defined by the
lesion binary mask and finding the difference with respect to the mean z value
of the set of points T from the surrounding skin area, as defined by the “normal
skin” binary mask (cf. Section 4.3). This measure is defined in Equation (5.1).

∆mean spot height =
1

|S|
∑

zi∈S zi − 1

|T|
∑

zi∈T zi (5.1)
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5.1.2 Algorithm verification

To verify the correctness of the implemented calculation, synthetic data was
created to simulate depth data captured from a lesion surface. The lesion area
was simulated by a hemisphere of radius r = 0.1 and the normal skin area was
represented by a flat plane with a small amount of Gaussian noise added (µ = 0,
σ = 0.001) to simulate small imperfections typically found on the epidermis. A
plot of the synthetic data can be seen in Figure 5.1. Given that the dimensions of
the hemisphere structure were known, it was possible to predict the values that
the mean spot height extraction algorithm would produce and compare these
with the observed values. For example, the mean lesion height can be predicted
using Equation (5.2). The predicted and experimental results produced by this
feature using the synthetic data can be found in results Table 5.1 below. It is
noted that the experimental value is slightly below the predicted value. This
may be explained by the lesion mask perimeter being slightly larger than that
of the synthetic hemisphere, therefore a small amount of relatively flat skin at
the border of the spot is taken into account when calculating the average height,
slightly lowering the observed value.

Mean lesion height =
2
3
πr3

πr2
=

2

3
r (5.2)
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Figure 5.1: Synthetic skin lesion depth data
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Mean lesion height Mean skin height ∆mean spot height
Predicted 0.0666 ε 0.0666 - ε
Observed 0.0576 2.3313×10−7 0.05759

Table 5.1: Synthetic data mean spot height values
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Figure 5.2: Class distributions for mean spot height feature

5.1.3 Observations

The class distributions of the data set in the feature space defined by this prop-
erty are plotted in Figure 5.2. The classes do appear to exhibit some degree of
separability in this space. Classes SCC and SK have fairly long right hand tails,
exhibiting a large number of samples with values greater than 2mm in contrast
to the other three classes. This indicates that SK and SCC samples may tend to
physically protrude from the skin more, making this feature a useful descriptor
for these classes in particular.

It can also be noted from this plot that a number of lesions from the classes
BCC and ML have a negative mean spot height, indicating an overall depressed
or concave global lesion structure. The data point belonging to the ML sample
on the furthest left of the distribution (largest negative mean spot height) was
investigated and the corresponding intensity and depth data can be seen in Figure



32 5. COLOUR AND DEPTH FEATURE EXTRACTION

Figure 5.3: Intensity and range data for ML sample with negative feature value

5.3. The intensity image gives the impression that this mole is fairly small and
flush with the skin, providing little in the way of useful local depth information
(this was confirmed by inspecting the corresponding cosine shaded image). The
depth data shows how the global structure and curvature of the body part has
eclipsed any local subtleties, (even after global orientation correction) accounting
for this uncharacteristic feature value.

The class distributions appear to be fairly unimodal with the exception of the
class AK where a lack of available samples makes an accurate prediction about
the shape of the distribution difficult. BCC also appears to exhibit a slightly
taller and narrower peaked distribution than the others.

5.2 Feature: Roughness ratio

A second family of metrics making use of the depth data and also the colour
intensity channels is defined as Roughness ratio. Here we hope to express any
macro variation of the lesion surface area in the z-depth channel and red, green,
blue colour channels. This family of features attempts to take advantage of
the fact that the skin classes studied typically exhibit varying levels of surface
roughness. For example, in [3] it is noted that lesions belonging to the classes
SCC and BCC are typically “crusty” with irregular borders while benign moles
(represented by the class ML here) are described as having a relatively smooth
surface.
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5.2.1 Feature definition

This feature is derived for each of the four available channels of information by
taking the standard deviation σ of the set of points S in the lesion area of each
sample and normalising by the standard deviation of the set of points T in each
sample consisting of normal skin. For smoother lesions, it is expected that this
ratio will be close to 1, i.e. there is not much difference between the roughness
of the lesion area and surrounding normal skin.

This measure is defined in Equation (5.3) where σc
X is the first standard deviation

of the points in area X from information channel c ∈ {red,green,blue,z-depth}.

Roughness ratioc =
σc

S

σc
T

(5.3)

5.2.2 Algorithm verification

The correctness of the algorithm implemented to calculate roughness values was
again verified by the use of synthetic data. For the intensity channels (red, green,
blue) a synthetic image was created with pure red (RGB [255, 0, 0]) and green
(RGB [0, 255, 0]) areas. Discrete uniformly distributed values (0 − 255) were
added to each pixel in the red, green, blue channels to simulate intensity roughness
and variation. A similar synthetic image was created for the z-depth channel again
using uniformly distributed values (0−100) to simulate variation in the spot area
and skin area. An example of the synthetic colour data is displayed in Figure
5.4.

The standard deviation of a discrete uniform distribution from values a to b is
defined in Equation (5.4) and can be used to calculate expected values for the
synthetic data with respect to this feature family. Predicted and observed results
can be seen in Table 5.2. The difference between the theoretical and observed
values was found to be small in all cases (≤ 0.052). The infinity value is the green
roughness ratio entry is explained by the fact that all pixels in the skin area will
have the maximum value (255) in the green channel, giving a standard deviation
(and therefore divide by) zero.

σ =

√
(b− a)2

12
(5.4)
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Figure 5.4: Synthetic intensity data with uniform red green blue channel noise

Roughness ratio

Roughness ratio
σr

S

σr
T

σg
S

σg
T

σb
S

σb
T

σz
S

σz
T

Predicted 0.0 ∞ 1.0 1.0
Observed 0.0520 ∞ 1.0041 0.9996

Table 5.2: Spot area standard deviations

5.2.3 Observations

The distributions for this roughness feature in the z-depth channel are plotted in
Figure 5.5. Corresponding plots for the red, green and blue channels can be found
in the Appendix. It can be seen from the distributions in Figure 5.5 that there is
significant overlap amongst the five classes, with each class typically displaying
a heavy concentration of samples near a ratio of 1.0, indicating the existence of
globally smooth samples in all classes.

A number of outliers displaying high roughness ratio values can be seen in the
plot but this does not appear to be class specific. The shape of the distributions
would suggest that this feature in the z-depth channel (and indeed the three
colour channels) do not exhibit sufficient variations across the skin classes to aid
reliable classification.
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Figure 5.5: Class distributions for Roughness ratio in z-depth channel

5.3 Feature: Mean intensity ratios

A set of nine further features were derived from the mean values of the intensity
channels (red, green, blue). This family of features was implemented in an at-
tempt to automatically compute quantities which emulate the “colour” aspect of
the ABCD clinical diagnosis rule criteria discussed previously. Variegated colour
based features are cited in [25] as one of the most predictive class of features in
the classification of malignant melanoma lesions. With this feature family, we
explore whether this success can be extended to the classes of skin lesion studied
here.

5.3.1 Feature definition

These features involve calculating mean values in each of the red, green and
blue colour channels. Mean values are computed for each intensity image in
areas defined by both the spot and skin binary masks, in a similar fashion to
the previous roughness properties. Normalised spot-to-skin ratios are then used
to define the features. The nine ratios used in this feature set are listed in
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Equation (5.5) where µc1S , µc2T are the mean intensity values of channel c1,c2

∈ {red, green, blue} in the spot and normal skin areas of the image, respectively.

µrS

µrT
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µrS

µgT
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µrS
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µgT
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µgS

µbT

,
µbS

µrT

,
µbS

µgT

,
µbS

µbT

(5.5)

5.3.2 Algorithm verification

The correctness of the extraction method for this feature set was verified by
making use of similar synthetic colour data to that found in Section 5.2.2. A
synthetic colour image similar to that of Figure 5.4 was hand segmented using our
spot segmentation tool under the assumption that the circular pure red area of the
image represented the lesion and the pure green area represented the normal skin
area. From the resulting binary masks the ratio values for this feature set could
be predicted1 and compared to the observed values. Predicted and experimental
results are found in Tables 5.3 and 5.4. The small discrepancies are explained by
the fact that a few colour pixels on the skin / spot border were likely partitioned
into the the wrong mask due to the imperfect nature of hand segmentation.

Spot
R = 255 G = 0 B = 127.5

R = 0 ∞ ∞ ∞
Skin G = 255 1.0 0.0 0.5

B = 127.5 2.0 0.0 1.0

Table 5.3: Predicted Spot
Skin

intensity ratios

Spot
R = 255 G = 0 B = 127.5

R = 0 ∞ ∞ ∞
Skin G = 255 0.9977 0.0023 0.5010

B = 127.5 1.9924 0.0046 1.0005

Table 5.4: Observed Spot
Skin

intensity ratios

5.3.3 Observations

The class distribution for one of the most promising features ( µrS
µgT

) from this

family is plotted in Figure 5.6. Plots of the further eight features from this set

1Predicted blue channel “noise” values are the expectation of a uniformly distributed variable
(0-255) E(B) = 255

2
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can be found in the Appendix. This ratio feature and indeed others in this family
do seem to exhibit some separation between the studied classes. In particular the
classes SK and ML have a significant number of samples found below the data
set mean (µ = 1.1309), with these distributions also displaying distinctive long
left hand tails.

The remaining three classes SCC, BCC and AK all exhibit noticeably higher
distribution means with AK in particular (all samples bar one) lying completely
above the mean value for the data set, which would suggest high red channel val-
ues for this class. This agrees with typical Actinic Keratosis visual characteristics
which were noted to include inflammation with surrounding redness or bleeding.
These characteristics were confirmed to be consistant with the available samples
by visual inspection and it is therefore thought that this feature and others from
this family may prove useful for lesion identification.

0.4 0.6 0.8 1 1.4 1.6 1.8 21.1309

AK

BCC

ML

SCC

SK

Class distribution for intensity ratio feature (Red/Green)

Feature values (Mean intensity ratio)
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Figure 5.6: Class distributions for Mean intensity ratio µrS
µgT

5.4 Feature: Peak and pit densities

Textural features can be loosely divided into two categories: structural and sta-
tistical [27]. Structural features try to determine the primitives with which the
texture is composed while statistical features typically compute local features at
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each point in the image and derive a set of statistics from the distributions of
these local features.

Statistical methods can be further classified as first-order (one pixel), second-
order (two pixel) and higher-order (three or more pixel) statistics. First-order
statistics ignore the spatial interaction between image pixels while second and
higher-order statistics estimate properties occurring at specific locations relative
to each other.

Here we define a higher-order statistical feature set which counts the number of
peak and pit values in each information channel over the region defined by the
spot binary mask. With these features we attempt to capture descriptive local
texture information from the lesion samples. Peak and pit values are formally
defined in the following section.

Since the coarseness of an image is not absolute but depends on the scale at which
the image is processed or viewed, several levels of granularity were experimented
with when extracting this family of features.

5.4.1 Feature definition

A peak (or pit) value is defined to be a data point that has no surrounding points
in a neighbourhood of cardinality N with a greater (or lower) value. A qualifying
peak value x2,2 and corresponding neighbourhood region for N = 9 can be seen
in Equation (5.6).

x1,1, x1,2, x1,3, x2,1, x2,3, x3,1, x3,2, x3,3 < x2,2 (5.6)

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

A statistical feature is then defined for each information channel c ∈ {red, green, blue, z−
depth} as follows:

Peak and pit densityc =
#peaksc + #pitsc

spot area
(5.7)

The image data was passed through a Gaussian lowpass filter with varying stan-
dard deviations (σ = 0.5, 1, 2) and the feature set extracted at each of the result-
ing levels of granularity.
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5.4.2 Algorithm verification

To verify the correctness of these features, synthetic intensity and range data
was engineered to contain representative local texture information. Depth data
was created using a linear combination of a cosine and sine waves to produce a
“bumpy” surface and then binary masked as a lesion. Synthetic intensity data was
created by hand, by adding small red, green and blue areas to a constant brown
background. Peak and pit areas could then be counted by visual inspection and
compared to the results obtained by the feature extraction algorithm. Sample
test range data is found in Figure 5.7 and the corresponding intensity image can
be seen in Appendix. Test results can be seen in Tables 5.5 and 5.6. It can be
noted that no blue pits were found in the intensity test data due to a brown
background colour (RGB: 128, 64, 0) being used meaning no points had a strictly
lower blue channel value.

Figure 5.7: Synthetic textured depth data

Red peaks Green peaks Blue peaks z-depth peaks
Predicted 10 10 10 11
Observed 10 10 10 11

Table 5.5: Synthetic data peak counts

Red pits Green pits Blue pits z-depth pits
Predicted 20 20 0 8
Observed 20 20 0 8

Table 5.6: Synthetic data pit counts



40 5. COLOUR AND DEPTH FEATURE EXTRACTION

5.4.3 Observations

The plot in Figure 5.8 show the distributions in the depth channel with different
levels of the Gaussian filter applied. A large amount of overlap among the classes
is exhibited by both data plots in this information channel. The distributions
are very broadly spread with nearly every class containing samples across the
spectrum of obtained values. This trend of high overlap is consistant across all
four information channels and in all explored levels of Gaussian filtering. Further
work might take the direction of exploring a wider range of Gaussian σ values,
as the effect of the range experimented with here can be seen to be minimal.

It was predicted that classes of typically smoother lesions such as moles (ML)
would produce a distinctive distribution under such texture properties, however
this lack of class separability seems to make the features unlikely to contribute
significantly to accurate classification.

Figure 5.8: Class distributions for depth channel peak and pit density (Gaussian
image filter Left: σ = 0.5 Right: σ = 2.0)

5.5 Feature: 3D moment invariants

Moment based features are used in many computer vision applications and can
be thought of as weighted averages of the image pixel intensities (or functions of
those moments, chosen to have some useful interpretation). Originally defined in
two dimensions by Hu [21], the technique can be extended to compute moment
invariants of 3D point distributions that are invariant to translation, rotation
and scale thus providing a measure of the spatial distribution of mass in a 3D
shape. Here we make use of the available depth based data to calculate modified
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versions of three second order moment invariants originally due to Sadjadi and
Hall [33].

5.5.1 Feature definition

Let (x̄, ȳ, z̄) be the centroid of the object.

Let S be the set of points defined by the binary spot mask.

Let

ρ(x, y, z) =

{
1 if (x, y, z) ∈ S
0 if (x, y, z) /∈ S

The 3D moments of order n = p+q+r, n ∈ N of the 3D density function ρ(x, y, z)
are defined by

µpqr =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x− x̄)p(y − ȳ)q(z − z̄)rρ(x, y, z)dxdydz (5.8)

The continuous moment definition found in Equation (5.8) can be approximated
to our digital depth data by using summation in place of integration. From this
we define three second order moment features that are invariant to translation
and rotation:

I1 = µ200 + µ020 + µ002 (5.9)

I2 = µ200µ020 + µ200µ002 + µ020µ002 − µ2
110 − µ2

101 − µ2
011 (5.10)

I3 = µ200µ020µ002 + 2µ110µ101µ011 − µ002µ
2
110 − µ020µ

2
101 − µ200µ

2
011 (5.11)

(5.12)

To make Sadjadi and Hall’s original moments also invariant to scale we further
normalise each moment by a function of the moment order and shape volume:

µpqr ← µpqr

(V olume)(p+q+r+3)/3
(5.13)

Finally we define the three moment features as monotonic functions with a scaling
constant C:

J1 = log10(I1) + C1 (5.14)

J2 = log10(I2) + C2 (5.15)

J3 = log10(I3) + C3 (5.16)

(5.17)
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5.5.2 Algorithm verification

Verification was carried out by again producing synthetic 3D data to test the
moment value calculations. A simple cube of edge length two was used in this
case to simulate the lesion surface area. The simple shape and dimensions of
the cube aided in the ease with which moment values could be calculated. An
example plot of the synthetic data and verification results are found in Figure
5.9 and Table 5.7 respectively. The predicted value for I1 for the synthetic data
is derived here explicitly with I2 and I3 calculated analogously.

µ200 =

∫ 2

0

∫ 2

0

∫ 2

0

x2y0z0dxdydz

=
x3

3

∣∣∣
2

0

=
8

3

Applying scale normalisation: µ200 ← µ200

85/3

µ200 =
8

3 · 32
= µ020 = µ002

∴ I1 =
8

96
+

8

96
+

8

96
=

1

4

I1 I2 I3

Predicted 0.25 0.0208 0.000625
Observed 0.2484 0.0206 0.000568

Table 5.7: Predicted and observed moment invariant values

5.5.3 Observations

Figure 5.10 shows the class distributions of values calculated for the moment fea-
ture J2 defined in Equation (5.15). The distributions appear to be similar across
the considered classes, with the feature values exhibiting a lot of overlap and sim-
ilar overall distribution shape. Similar results were found for the distributions of
J1 and J3 (which can be found in the Appendix).

It is noted that the hand segmented spot mask is likely to heavily influence the
values that this feature family produces, as the mask essentially dictating the



5.6. DATA RESCALING 43

−2

−1

0

1

2 −2

−1

0

1

2

0

0.5

1

1.5

2

Synthetic data for 3D moment verification

Figure 5.9: Synthetic depth data for 3D moment invariants

shape of the spot in the x and y dimensions. During hand segmentation, the
spot mask shape was found to be fairly uniform across all samples processed and
therefore does not afford much information about which class a lesion belongs
to. It is possible that extracting these features in conjunction with an automated
segmentation technique might be able to produce more class distinctive spot mask
shapes and in turn, more descriptive invariant moment features.

5.6 Data rescaling

All the features presented in this chapter have different physical units (e.g. av-
erage spot height in meters) or are without any unit (e.g. 3D moment invariant
values) and, therefore, have different value ranges. To account for this, an ob-
jective scaling of the features is achieved by calculating z-scores [19] which are
defined in Equation (5.18) where xij represents the ith sample measure of fea-
ture j and µj the mean value of all samples for feature j and σj is the standard
deviation of the samples for feature j.

The z-scores have the statistical properties µz = 0 and σz = 1 and are objectively
derived without any knowledge about individual features. This dimensionless
quantity indicates how many standard deviations an observation is above or below
the mean. Converting the features to this form allows us to easily compare
different feature distributions (as are discussed in Section 6.2). Standardising the
feature values would also allow us to make use of distance based classifiers in
future work.
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Figure 5.10: Class distributions for feature J2

zij =
xij − µj

σj

(5.18)

5.7 Feature selection

We are exploring a real-world classification problem where the underlying class
probabilities and class-conditional probabilities are not exactly known. In real-
world situations such as this, relevant features are often unknown apriori so in this
chapter we have introduced many candidate features to represent the skin lesion
domain. Unfortunately, as hinted at by some of the observed class distributions
in this chapter, many of these features are either partially or completely irrelevant
or redundant to the target concept, where irrelevant features do not affect the
target concept in any way and redundant features do not add anything new to
the target concept [22] (a relevant feature is neither irrelevant nor redundant).

Eliminating these unwanted features has several advantages. If a feature space
with a large dimension is used, the performance of the classifier may decrease
with respect to execution time and to recognition rate [4]. The execution time
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increases with the number of features because of the measurement cost. The
recognition rate can decrease because of redundant features and of the fact that
using fewer features can alleviate the curse of dimensionality where a limited
number of training samples leads to overtraining.

The second issue especially can be seen to apply to this project, with a noted lack
of samples available in certain classes. For example, only eleven usable samples
of Actinic Keratosis are available in the data set in the most extreme case. Due
to the nature of the probabilistic classifier used (detailed in Chapter 6), we are
constrained by the fact that having N training samples per class lets us use a
maximum of N−1 features for the purpose of classification. It can also be argued
that a classifier built with a smaller number of features is preferable to an equally
accurate classifier built with the complete set of features.

Due to the fact that some of the defined features are likely not to be informative
for classification and that the number of training samples available for building
the classifier is substantially smaller than the number of possible features in
some classes, a Feature selection method is presented here that attempts to pick
a relevant and descriptive subset of features for the purpose of classification.

5.7.1 Criterion function

Feature selection methods have been looked at from various angles with [12]
noting four categories of Feature selection algorithm.

1. Idealised : find the minimally sized feature subset that is necessary and
sufficient to the target concept [23].

2. Classical : select a subset of M features from a set of N features, M < N ,
such that the value of a criterion function is optimised over all subsets of
size M [28].

3. Improving Prediction accuracy : the aim of feature selection is to choose a
subset of features for improving prediction accuracy or decreasing the size
of the structure without significantly decreasing prediction accuracy of the
classifier built using only the selected features [24].

4. Approximating original class distribution: the goal of feature selection is to
select a small subset such that the resulting class distribution, given only
the values for the selected features, is as close as possible to the original
class distribution given all feature values [24].

Here we present an approach based on the second and third of these categories
aiming to find feature subsets that improve the prediction accuracy of the clas-
sifier and minimise the cost based metric described in Section 6.1.4. Approaches
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using this type of evaluation function can be thought of as “wrapper methods”
(i.e., the classifier is the evaluation function). As the features are selected us-
ing the classifier that later on uses these selected features in predicting the class
labels of unseen instances, the accuracy level is expected to be high.

5.7.2 Exhaustive selection

Ideally, a feature selection algorithm would search through all subsets of N fea-
tures and try to find the optimal one among the competing 2N candidate subsets
according to the evaluation function. This procedure is exhaustive in that it
would evaluate every possible combination, trying to find the best one. For the
purposes of this project, an exhaustive approach proved too costly2 and practi-
cally prohibitive with even a medium sized original feature set of N = 30. With
this in mind, a second method based on a greedy heuristic was used in an attempt
to reduce computational complexity.

5.7.3 Greedy selection

Due to the high dimensionality of the feature space, a greedy feature selection
algorithm was proposed. The algorithm devised for feature subset selection is
a version of Sequential forward selection (SFS) [13] in that it starts with an
empty subset and iteratively adds one feature at a time so as to maximise the
intermediate criterion value until the required dimensionality is achieved. A
sketch of the method is given in Algorithm 1

The main caveat here is a performance compromise. As with any greedy heuristic
making locally optimal decisions, we are not guaranteed to find the global maxima
(overall best feature subset). The other drawback of such a simple approach is
that it may suffer from so-called nesting of feature subsets which may deteriorate
the performance. Attempts to overcome this problem have been made with more
recent approaches such as Sequential floating search methods [29].

5.8 Summary

In this chapter we have presented the techniques used to extract various features
from both the intensity and depth data channels and a selection method to re-
duce the dimensionality of the feature space for the purposes of classification.

2For this project the evaluation of a single feature subset took ≈ 15 seconds. With 30
features, an exhaustive search of the space was estimated to take 230 × 15 sec ≈ 186,500 days!



5.8. SUMMARY 47

Algorithm 1 Greedy feature subset selection

(Initialisation)
xk = {}
k = 0
J0 = 0
Sm = {f1, f2, ..., fm}
xk is the current feature subset
m is the number of total features
S is the full set of features
while |xk| < Max feature subset size do

f = argmaxf∈Sm
eval(xk ∪ {f})

J = eval(xk ∪ {f})
if J > Jk then

xk+1 = xk ∪ {f}
Sm = Sm \ {f}
Jk+1 = J
k = k + 1

else
break

end if
end while
Output xk
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Discussion of the best feature subsets found can be seen in Chapter 7. We note
that, of the features explored, the class distributions tend to yield fairly subtle
degrees of separation amongst the various types of skin lesion rather than clear
cut and easily identifiable clusters within the feature space. The set of features
defined and explored in this work is by no means complete or exhaustive and an
important direction for future work might look to define further properties which
would perhaps yield more representative and distinct features. Even so, the use
of depth information does appear to show at least some promise for the purposes
of automatic lesion classification.



6. Classification

For the purposes of image classification a standard Bayes classifier is chosen. The
Bayes classifier is a classical technique and in this case is a typical representative of
supervised machine learning. Here we give a formal definition of the classification
technique and provide some discussion towards justifying this choice of classifier.

6.1 Bayes classifier

The technique classifies each previously unseen lesion sample by comparing the
relative probabilities of the sample belonging to the different classes in the train-
ing set. After finding a suitable feature subset by the method described in Section
5.7.3, we are now able to represent each lesion sample that is to be classified as
a feature vector containing values derived from the intensity and range data of
the sample. Let this vector be denoted x = [f1, f2, ..., fc]

T . The question we are
then interested in for classification becomes:

“given a new sample x, what is P (class = k|x) ?”
(i.e. “what is the most likely class for this sample ?”)

Using Bayes’ theorem we are able to evaluate the probability of the sample x
belonging to the class k ∈ {AK,BCC, SCC, ML, SK} after we have observed
the data in the form of this posterior probability P (class = k|x).

To evaluate this probability, we can use Bayes rule

P (A|B) =
P (B|A) · P (A)

P (B)
(6.1)

Which in this case gives

P (class = k|x) =
P (x|class = k) · P (class = k)

P (x)
(6.2)

6.1.1 Likelihood

Finding the required probabilities involves learning a multivariate Gaussian dis-
tribution for each class to find P (x|class = k) for any datapoint x. The multi-
dimensional Gaussian is given in Equation (6.3) where the D-dimensional vector

49
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µ is the mean and the D × D matrix Σ is the convariance, and |Σ| denotes the
determinant of Σ.

N(x|µ, Σ) =
1

(2π)D/2

1

|Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
(6.3)

Finding the best fit for the Gaussian distributions given the training data in-
volves finding the maximum likelihood sample estimates for the two parameters
µ and Σ. To determine the parameters from the data, we make the assumption
that the data points drawn from this distribution are independent and identically
distributed (i.i.d.). The maximum likelihood estimates for µ and Σ are then given
by

µ =
1

P
ΣP

i=1x
i (6.4)

and

Σ =
1

P − 1
ΣP

i=1(x
i − µ)(xi − µ)T (6.5)

6.1.2 Apriori

Since the denominator on the right hand sides of Equation (6.2) is independent
of the class, it remains to find the apriori probability P (class = k). The aprioris
were calculated by simply counting the occurrences of each class in the training
data.

The data used in this project is captured during routine diagnosis in the De-
partment of Dermatology (cf. Section 3.2). Thus, the dataset may be thought
to reflect the apriori probabilities of the routine diagnosis in a hospital (note:
this is likely not the distribution of lesions observed among the population). We
note that using the fraction of observations in the data set for directly estimating
the apriori probabilities may be subject to over-fitted results for small data sets.
Future work might look to develop a full Bayesian treatment for this problem by
introducing a prior distribution over the parameter µ, such as a Beta distribution
[9]. With a larger data set, it would also be possible to achieve an equal cardi-
nality of each class by selecting an equal number of random samples from each
class for the purpose of training the model.
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6.1.3 Recognition

Once we have the likelihood and apriori probabilities we are able to make use
of the Bayes rule relationship (6.6) for classification. We can now obtain the
probability we are really interested in, P (class = k|x) and using this can classify
each new datapoint x, as the class k that returns the highest posterior probability.

posterior ∝ likelihood× prior (6.6)

In practice, we take logarithms of the above probabilities as it provides a numer-
ically more stable procedure [5]. Since logarithms are monotonic functions, this
will not affect the decision process. Therefore we classify x as class k where

logP (x|class = k)+logP (class = k) > logP (x|class = j)+logP (class = j) ∀ j 6= k
(6.7)

The accuracy of the classifier can then be tested by iterating over each sample in
the test data and computing the maximum posterior class using (logged) Bayes
rule and comparing the predicted class (largest posterior) with the true class
label.

6.1.4 Minimising the expected loss

For this classifier and similar systems used for the analysis of medical images it
is noted that the objective may be more complex than simply minimising the
number of misclassifications. Considering this skin cancer diagnosis problem in
particular, we note that if a patient who does not have a life threatening cancer
is incorrectly diagnosed as having such a disease, the consequences may be some
patient distress plus the need for further investigations. Conversely, if a patient
with a serious, malignant skin cancer is diagnosed as healthy, the result may be
premature death due to lack of treatment. Thus the consequences of these two
types of mistake can be dramatically different. It would clearly be better to make
fewer mistakes of the second kind, even if this was at the expense of making more
mistakes of the first kind.

Here we attempt to formalise these issues by introducing a cost function, which
represents a single, overall measure of loss incurred in taking any of the available
decisions or actions [9]. The overall goal then becomes minimising the total cost
incurred in taking any of the available classification decisions.



52 6. CLASSIFICATION

For each new data sample x of true class k that we assign to class j (where it
is possible that j 6= k), we incur a level of loss that we denote by Lkj, which we
define as the k, j element of a loss matrix.

By further collaboration with the dermatological expert who provided the original
gold standard of clinical diagnoses for the data set, we have defined a set of
heuristic cost values for each misdiagnosis based on the following qualitative
descriptions.

• A Extremely severe: Such a misclasification may result in the death of the
patient.

• B Bad : Patient death is a possibility, but the problem could be dealt with
in a year as easily as now.

• C Annoying : The diagnosis slightly overestimates the potential danger of
the spot (e.g. a Mole classified as AK or AK classed as BCC).

• D Extremely annoying : The true class is likely harmless (i.e. a Mole) but
the patient is informed the lesion is something extremely severe.

• E Indifferent : The misdiagnosis does not change the outcome or the worry
level of the patient.

The proposed heuristic cost values associated with these misclasification descrip-
tions are found in Table 6.1.

Misclasification type A B C D E
Proposed cost 10 5 3 5 1

Table 6.1: Heuristic misclasification cost values

From these values we are then able to define a 5× 5 misclasification loss matrix
L tailored1 to the classes explored in this project as follows:

The decision rule that minimises the expected loss is now the one which assigns
each unseen sample x to the new class j for which the quantity in Equation (6.8)
is a minimum. These values are computed easily once we obtain the posterior
class probabilities P (class = k|x).

min
true

∑

diag

L(true,diag)P (class = diag|x) (6.8)

We make use of both the standard Bayes classifier decision rule (6.7) and this
augmented cost model rule (6.8) for the purpose of skin lesion classification.

1Since the classification experiments carried out in this work were performed, an updated
loss matrix has been provided with re-evaluated entries for LML,BCC , LML,SCC and LML,SK
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Figure 6.1: Loss matrix L(true,diag)

Results using these techniques are discussed in the following chapter.

6.2 Discussion

We use a statistical approach, and make the (typical) assumption of a normal
multidimensional probability distribution in the experimental data set. Some
evidence towards the validity of this assumption might be drawn from Figures
6.2 and 6.3 where histograms of z-score values can be seen for each class for the
mean spot height and mean intensity ratio features. These plots can be regarded
as fairly Gaussian in shape possibly with the exception of the AK class (with only
eleven available samples estimating the underlying distribution becomes difficult).

The inspection of the features in Chapter 5 showed a few partially distinctive
distributions and some nuances among the classes and it was partly for this
reason that a parametric classifier was chosen. Further noted advantages of the
simple Bayes classifier include ease of implementation, a simple and transparent
interpretation and fast training and classification times [16, 9].

It is worth noting that such a simple classifier is not without drawbacks. For
instance, if there are noises in the input set then a classical Bayes classifier assigns
the pattern (noise) to the nearest cluster. Extentions to the work presented here
might take the direction of implementing more advanced classifiers to address
such problems or implementing a rejection cut off threshold. Since the clustering
yielded by the five examined classes in the feature space was shown to be fairly
minimal in some instances, another direction might also look at nonparametric,
discriminative approaches such as (for example) a k-nearest-neighbour method.
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Figure 6.2: Class distribution shape for Mean colour intensity ratio feature family
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Figure 6.3: Class distribution shape for Mean spot height feature
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7. Results and evaluation

7.1 Experimental methodology

Obtaining the required evidence for the hypotheses of the project (cf. Section
1.2) involved conducting classification experiments in which the only independent
variable was the inclusion or exclusion of depth based features in the system
and the dependent observed variable was the resultant classification rates or cost
values of the two systems. Multiple classification experiments are used in an effort
to average across any random variables outside or beyond our control. These were
performed mainly in an attempt to ensure that any difference in accuracy or cost
value we are able to measure is due to the presence or absence of depth based
features.

7.1.1 Experiment outline

The classification experiments involved splitting the available image samples into
disjoint subsets; the training set and testing set where the training set can be
considered the development examples for the systems. Keeping the training and
testing sets disjoint ensures that we are measuring how well the systems perform
on previously unseen samples. Each experiment involves training two learning
systems with identical training sets. Keeping the set constant between systems
will help to ensure that the only independent variable in the experiment is the
feature set used by the system.

The need to perform multiple classification experiments with a data set of limited
size is a problem we note. We make use of cross validation evaluation methods
in an effort to ’make the most’ of the available data. Due to the fact that the
set of lesions deemed usable for experimentation purposes was fairly small, (234
lesion samples over five classes) we make use of this statistical pattern recogni-
tion strategy to best exploit the available data for training while still keeping
independent data for the performance evaluation. In the following experiments
leave-one-out k-fold cross validation was used (i.e. each system is trained on all
of the available skin lesions apart from the one that is to be classified). This
means that 234 separate times, the system is trained on all data except for one
point and a prediction is made for that point. This affords us the maximum
milage possible from the available data in terms of model training. The main
disadvantage experienced with this method was that generating predictions for
the entire data set becomes relatively expensive in terms of computation time.
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Admittedly the numbers of points in the testing and training sets are ad hoc and
additional exploration with a larger data set is likely to be warranted.

Once the systems have been trained, they are then passed the previously unseen
testing set images and the classification that the systems make on that sample
recorded. Within an experiment, both systems will be tested on the same images.
From this record of true and assigned class pairs, we are then able to derive
appropriate performance measures such as classification accuracy and minimum
cost with which to confirm (or refute) the stated hypotheses. The external gold
standard which is required to measure the correctness of the classifications made
by the two systems is the hand labelled class of each image which has been
provided by a dermatological expert (Professor Jonathan Rees).

7.1.2 Performance metrics

7.1.2.1 Classification accuracy metric

To produce appropriate classification performance measures from the experimen-
tal results we compute an overall classification accuracy for each system. This
is the rate with which it is able to correctly identify each class of the provided
samples and to take an average of these ratios with respect to the number of
classes. This performance measure is defined in Equation (7.1) where N is the
number of testing set classes.

Overall accuracy =
1

N

∑N
i=1

classicorrect
classitotal

(7.1)

The simpler measure of the ratio of total correct
total samples

is not used in an effort to

avoid the problem of extremely good or bad performance of a highly occurring
class weighting the result in a deceptive fashion. For example, as our data set
includes a large number of Seborrheic keratosis samples, even a naive approach
of classifying all test samples as this class would produce a performance better
than random class assignment by this simpler metric.

7.1.2.2 Cost function metric

For the second evaluation metric we make use of the loss matrix defined in Section
6.1.4 and define the cost of a set of classifications as the sum of the incurred
misclasification penalties. In this way a correct classification contributes 0 and
the lower overall cost, the better. The cost value for a set of classifications can
be easily obtained by multiplying (element-by-element wise) the class predictions
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represented as a confusion matrix with the loss matrix and summing the resulting
entries.

7.2 Experimental results

7.2.1 Feature subset selection

The feature subset selection algorithm described in Section 5.7.3 was used to
find the best performing (but not necessarily optimal) feature subsets for both
the system constrained to only intensity based features and the system making
use of both intensity and depth based data. The algorithm was run for both of
the decision rules described in Equations (6.7) and (6.8) in conjunction with the
classifier as the criterion function. We note a slight methodological problem here
that the criterion function performance is being estimated with the same data set
with which classification experiments are performed which may introduce some
dependency during feature selection. Ideally, with a larger data set we would
leave some of the samples out of the feature selection stage entirely, reserving
them completely for classification.

The best performing feature subsets found with respect to the criterion functions
are listed in Table 7.1. A numbered feature set index can be found in Appendix.
In Figure 7.1 we plot the progressive success rate of the feature selection algorithm
using the accuracy criterion function when the selection process has the full range
of intensity and depth based features (left) and when it is restricted to intensity
features (right). This shows how the rate evolves as more features are selected.
We cut off selection after the best ten features are chosen due to the number of
available training samples as discussed in Section 5.7. However, it can be noted
from the plot that the performance is increasing in a fairly linear fashion and
if more data samples were available it might be possible to further increase the
accuracy using larger feature subsets (we note however that including too many
features runs the risk of overtraining).

Feature set Constrains on selection Criterion function Feature subset
I Intensity only Accuracy metric {10,9,8,3,5,25,4,16,13,7}
II Intensity and depth Accuracy metric {10,9,8,3,22,30,21,25,15,26}
III Intensity only Cost metric {7,6,19,5,9,24,25,13,2,12}
IV Intensity and depth Cost metric {7,6,19,22,4,24,8,1,26,2}

Table 7.1: Selected feature subsets. Numbers corresponding to depth based fea-
tures are in bold.
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Figure 7.1: Subset evolution comparison

7.2.1.1 Feature selection observations

Contrasting the results of the two selection criterion functions, we can notice
from Table 7.1 that the feature sets selected vary widely between criterion, with
only features 22 and 26 (peak and pit density in the z-depth channel) common
when the algorithm is given the full set of propertries to select from. With only
intensity features to select from, it can be seen that five features in total were
common between the criterion functions which suggests a little more stability
regarding which features are chosen when the available choice is narrower.

Of interest is that in both cases when using the accuracy metric as a criterion
function, the Mean intensity ratio properties are highly prominent in the selected
subset. The intensity only set makes use of seven of the nine properties within
this family (10,9,8,3,5,4,7) and the unconstrained set makes use of four (10,9,8,3).
The popularity of this family might be partially explained by the fact that this set
of features was shown to display a relatively favourable level of class separation
in (1D) feature space as discussed in Chapter 5.

Furthermore, with respect to the sets using the accuracy criterion function, we
notice that the first four features chosen are the same in both runs, indicating
that the initial best four features found using this selection method are intensity
based. The features selected were µrS

µbT
,

µgS

µbT
, µbS

µbT
,

µgS

µrT
from the mean intensity

family discussed above (c.f. Section 5.3.1 for detail). After this point, the selected
sets fork with the unconstrained set going on to select two depth based features
(peak and pit densities in the z-depth channel, (22,26)) which the constrained
run did not have access to. The sets continue to display different features with
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the unconstrained run picking one further depth based feature (30) from the 3D
moment invariant, family.

Similar observations can be made when the cost based criterion is used, where
the system able to select from the full feature set selects three properties making
use of the depth information channel: peak and pit density in the z-depth channel
extracted at two filtering levels (σ = 1.0, 2.0) (features 22,26) and the mean spot
height (feature 1).

It is encouraging that some of the explored features making use of depth infor-
mation are chosen for the classifier. We concede that the greedy algorithm used
here only provides a partial exploration of the feature set space. We highlight
that with this algorithm we are not able to delete features from the set once they
are added should further additions render them unnecessary or account (to some
degree) for the statistical relationship which may exist between the available fea-
tures1. With a more advanced selection algorithm such as Generalised Sequential
Forward Selection [6] or those discussed in Section 5.7.3, stronger claims about
the usefulness of the depth based features explored might be possible (although
compelling proof would likely only come from the exhaustive search of the space).

7.2.2 Classification results

The four feature subsets found in Table 7.1 were used when performing clas-
sification experiments on the data set. The results are evaluated by the two
performance metrics given in Section 7.1.3. The classification decision rule used
in each experiment corresponds to that with which the feature set was chosen (i.e.
the two models built on a feature set selected by the cost based criterion function
(sets (III) and (IV)) use the cost based decision rule for classification purposes).
All classification experiments make use of leave-one-out cross fold validation on
the available 234 lesion samples within the data set.

7.2.2.1 Feature sets selected for accuracy

Feature sets (I) and (II) were selected to achieve as good as possible classification
accuracy for the five skin lesion categories. Feature set (I) was the best set found
from the intensity based features and feature set (II) was the best set found that
made use of features from both the intensity and depth information channels.
The classification confusion matrices for the results achieved by feature sets (I)
and (II) are found in Tables 7.2 and 7.3 respectively.

1During the experimentation process it was noted that small alterations to feature definitions
often had large knock on effects to the subsets chosen during feature selection. This may suggest
the existence of interdependent statistical relationships between the features.



62 7. RESULTS AND EVALUATION

Diagnosis
AK BCC ML SCC SK

AK 11 0 0 0 0 100%
BCC 0 55 3 2 5 84.6%

True ML 0 7 49 0 5 80.3%
SCC 0 9 2 11 3 44%
SK 0 7 8 1 56 77.7%

Overall accuracy 77.3%
Misclassification cost 306

Table 7.2: Confusion matrix for feature set (I)

Diagnosis
AK BCC ML SCC SK

AK 11 0 0 0 0 100%
BCC 0 57 1 4 3 87.6%

True ML 0 4 48 2 7 78.6%
SCC 0 4 1 19 1 76%
SK 0 4 8 5 55 76.3%

Overall accuracy 83.7%
Misclassification cost 196

Table 7.3: Confusion matrix for feature set (II)

7.2.2.2 Feature sets selected to minimise cost

Feature sets (III) and (IV) were selected by a criterion to minimise the loss of the
function defined in Equation (6.8). This is performed in an attempt to make less
misclassifications of a serious nature, possibly at the expense of making more less
important mistakes. Feature set (III) was the best available set found for this
purpose from the intensity based features alone and feature set (IV) was the best
set found that made use of features from both the intensity and depth information
channels. The classification confusion matrices for the results achieved by feature
sets (III) and (IV) are found in Tables 7.4 and 7.5 respectively.

7.2.2.3 Classification observations

Looking at the classification results of feature set (I) and (II) in Tables 7.2 and
7.3 respectively, we note that the overall achieved accuracy performances, 77.3%
and 83.7% can be considered fairly reasonable in both cases. The system which
makes use of both depth and intensity based features (set (II)) can be seen to
outperform the system using intensity features alone by 6.4% on this particular
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Diagnosis
AK BCC ML SCC SK

AK 11 0 0 0 0 100%
BCC 0 35 3 25 2 53.8%

True ML 0 3 45 11 2 73.7%
SCC 0 0 0 24 1 96%
SK 0 6 16 3 47 65.2%

Overall accuracy 77.7%
Misclassification cost 194

Table 7.4: Confusion matrix for feature set (III)

Diagnosis
AK BCC ML SCC SK

AK 11 0 0 0 0 100%
BCC 0 47 3 14 1 72.3%

True ML 0 4 48 4 5 78.6%
SCC 0 0 1 23 1 92%
SK 0 6 15 5 46 63.8%

Overall accuracy 81.3%
Misclassification cost 183

Table 7.5: Confusion matrix for feature set (IV)

data set. The question of whether this can be considered significant is addressed
in Section 7.2.3.

From the presented results, we can see that using the average class performance
as a success metric is favourable to simply building the fraction of the number
of all correctly classified lesions over the number of all lesions, since we do not
have an equal sample distribution among the classes. If this simpler success
estimator was used, it would be possible to fine tune the classification parameters
(subsets used) to achieve a better overall performance by improving the accuracy
of abundant, less dangerous classes such as ML at the risk of losing performance
on the malignant lesion classes.

Taking a closer look at the class specific results in Table 7.2 and 7.3, it can be
seen that the two classifiers performed similarly in the classes AK, BCC, ML and
SK with both feature sets recognising all AK samples correctly and achieving
similar accuracies for the other three classes.

Both systems had some notable trouble recognising the dangerous SCC class,
displaying their lowest individual class accuracies. Comparing the two systems
with respect to SCC, the system using depth features is able to outperform the
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one without depth features by a considerable 32% recognition rate. As SCC
is a dangerous lesion class, this distinction between the recognition systems is
reflected in the higher misclassification penalty (306 vs. 196) awarded to the
feature constrained system even though the overall accuracy is similar to that of
the system making use of depth features. Typical SCC lesions were noted to have
a “crater like” appearance with raised surroundings and a central depression in
Chapter 3. The three features utilising depth as a modality in feature set (II)
may be at least partially helpful in describing these characteristics and helping
to improve the recognition rate for that system.

The most severe problems in these classifications are clearly the cases in which
malignant lesions have been categorised as benign spots such as the eight samples
in Table 7.2 that really belong to the dangerous BCC class but have been diag-
nosed as moles and Seborrheic keratosis. In a similar fashion, Table 7.3 exhibits
two samples belonging to the malignant class SCC which have been diagnosed as
belonging to typically harmless lesion families. An example misclasification can
be seen in Figure 7.2 where a true BCC sample was misclassified by the system
using feature set (I) as a mole. In this particular example, the system using depth
based features was able to correctly identify the BCC class.

The classification systems trained on property sets (III) and (IV) use features
selected on the cost based criterion and use the cost minimising decision rule
designed to combat this type of severe misclasification. The classification results
for these feature sets are found in Table 7.4 and 7.5.

Comparing the classification results between set (II) and set (IV) (where both
sets contain intensity and depth based features and the classifiers differ on the
decision rule) it can be noted that there is a sizeable increase in the classification
accuracy with which the dangerous SCC class is correctly recognised by the cost
based approach (from 76% to 92%). This is explained by the cost weighting
’pulling’ four SCC samples previously wrongly classed as BCC across the decision
boundary. Unfortunately, many true BCC samples that the classifier may not
have originally been overly certain about in Table 7.3 have also been pulled across
to SCC in Table 7.5, reducing the accuracy here (from 87.6% to 72.3%). This
is however deemed a less serious mistake to make as defined by the loss matrix
and might therefore be a justifiable compromise for a lesion classifier based in a
clinical setting.

In this vein, it is interesting to note that the overall accuracy for the cost based
approach in Table 7.5 is around 2% lower than the corresponding classifier results
in Table 7.3 but, the misclasification cost rating is better (i.e. patient utility may
be benefiting more overall). An analogous misleading effect can be seen between
the intensity only classifiers in Tables 7.2 and 7.4 where the overall accuracies are
very similar but the calculated misclasification cost to patients is over one and a
half times more when using the original accuracy decision rule!
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Figure 7.2: Intensity and depth data for sample D408. A BCC lesion misclassified
as ML by feature set (I) and correctly classified by set (II)

7.2.3 Statistical analysis

It can be seen in Section 7.2.2 that the classifier making use of depth and inten-
sity based features (set (II)) was able to exhibit a greater overall classification
accuracy than that of the classifier using intensity features alone (c.f. Tables 7.2
and 7.3). We now subject this result to basic statistical scrutiny.

We hope to make our classification results amenable to statistical analysis by
using common tests from the statistical literature. There are many approximate
statistical tests for determining whether one classification system outperforms
another on a particular task. One applicable test to verify the statistical signif-
icance of our classification results is McNemar’s test [14]. We now apply this
test to the classification results obtained by using feature set (I) (intensity only
features) and set (II) (intensity and depth features), where both classifiers made
use of the original decision rule found in Equation (6.7).

This test was chosen primarily as it provides a relatively simple yet reportedly
accurate measure which can be applied to our dual system classification experi-
ments. Let our base line system be s1 (making use of only intensity data features)
and our system making use of intensity and depth features be s2. This will in-
volve keeping track of the following quantities:

# examples misclassified by both s1 and s2 # examples misclassified by s1 but not by s2
# examples misclassified by s2 but not by s1 # examples misclassified by neither s1,s2
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We now abbreviate these quantities with the following identity:

n00 n01

n10 n11

The sum of these four quantities is the total number of examples in the test set.
We can construct a null hypothesis that the two systems have the same error
rate. McNemar’s test is based on a χ2 test and essentially computes a goodness
of fit that compares the distribution of counts expected under the null hypothesis
to the observed counts. The expected counts under the null hypothesis are:

n00 (n01 + n10)/2
(n01 + n10)/2 n11

The test then specifies the following statistic (Equation (7.2)) which is distributed
(approximately) as χ2 with 1 degree of freedom.

(|n01 − n10| − 1)2

n01 + n10

(7.2)

If the null hypothesis is correct at the 95% confidence level, then the probability
that this quantity is greater than χ2

1,0.95 = 3.841459 is less than 0.05. So we may
reject the null hypothesis in favour of the hypothesis that the two systems have
different performance when trained on this particular training set.

7.2.3.1 Statistical results

The classifier results being tested (Tables 7.2 and 7.3) yielded the following ob-
served counts for McNemar’s test.

25 19
27 163

We can therefore compute the statistic value for the classifications made by the
two recognition systems as:

(|19− 27| − 1)2

19 + 27
=

49

46
≈ 1.065 (7.3)

We concede that this χ2 value is not above the required level to be significant
p < 0.05. We cannot reject the null hypothesis at this significance level. As
χ2

1,0.698 = 1.065 we are however able to reject the null hypothesis in favour of the
hypothesis that the two classifiers have statistically different performances when
trained and tested on this data set at the lower significance level of p < 0.302
(i.e. there is less than 30% chance that this result arose by statistical variation).
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In this respect we have provided some evidence to support our initial hypothesis
that a classification system using a combination of intensity and depth based
image features is more successful at the task of classifying skin lesions than a
system which uses intensity based features alone.
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8. Conclusion

8.1 Discussion and summary

This work investigated the benefits of using surface shape and depth information
for automated skin cancer classification. We used a novel application of stereo
photogrammetry techniques to obtain surface shape information from a collection
of skin lesion samples.

The capture equipment allows for intensity and depth information to be acquired
in a fast, noninvasive and accurate manner which yields a favourable technique
for the specialised task of recording skin lesion information. The particular lesion
data provided for this work originated from an independent clinical environment
which proved to be a challenging source, exhibiting variations in the size of lesion
classes, quality of the data captured and distributions of data properties amongst
samples.

These characteristics of the data highlighted the need for accurate initial cap-
ture and further processing of the information channels to enhance features. In
particular, the depth data channel was fitted to a surface to best preserve the
presence of interesting local texture, with some success. Sometimes this tech-
nique was observed to fail, with global surface structure such as body parts or
hair follicles obscuring the area of interest. Depth information was successfully
used at this processing stage as input to visualisation techniques which were able
to provide useful information about the quality of the available data, highlighting
a use outwith classification.

The features used in the integrated system were designed to some extent, to
reflect the parameters used in medical diagnosis. The distributions of the data
samples in the examined feature spaces tended to exhibit nuances and subtle
degrees of separation rather than distinct clusters. This trend was seen to be
fairly universal across intensity and depth information channels.

By application of feature selection strategies the number of features used for
classification was reduced from 30 to 10 parameters. It was noted that the classi-
fication success of the system increases in a fairly linear fashion as more features
are added to the selected subset. This trend suggested that if more data points
were available, further increases in classification performance might be possible
by making use of larger feature subsets.

A simple statistical approach to classification was implemented. The overall ac-
curacy results of 77.3% and 83.7% for systems using intensity only and both
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depth and intensity based feature sets depict a reasonable performance for an au-
tomated system on a challenging data set. It was also shown that changing the
question being asked by the classifier decision rule could notably reduce the num-
ber of dangerous misclassifications being made by the system, without sacrificing
the overall classification accuracy.

By subjecting classification results to statistical testing, we were able to pro-
duce evidence at a reduced confidence level in support of our original hypothesis
that the use of range data is beneficial to automated skin lesion diagnosis. In
summary, depth information shows potential as a useful modality for skin lesion
classification especially if we can guarantee accurate capture conditions.

8.2 Further work

This work has only looked at a small set of data points and feature types. Fur-
ther exploratory investigation is warrented in a number of directions. In order
to achieve better classification results, new parameters should be derived and in-
cluded in the feature set. Extracting richer and more advanced properties that are
able to exploit the available depth information might yield a good starting point
for future work. New features might take the form of more complex treatments
of local roughness, curvature in the surface or global structure measures. One in-
teresting avenue to follow that might yield good results would be the combination
of 2D and 3D based features, which was not explored here.

As noted previously, more powerful feature subset selection techniques might be
applied to the problem of feature selection in this domain to combat the suspected
problem of feature interdependency when selecting subsets. With respect to
exhaustively searching the space, one route we were not able to fully explore in
this project was the possibility of applying distributed computing power to the
problem. The need to reduce the dimensionality of the feature space might also
be attacked from a different angle, such as Principal Component Analysis.

More advanced and exotic classification algorithms could certainly be applied to
this problem but as noted in the previous work survey, diversity in this respect
tends to make comparing related research difficult. Of more use would be a
coordinated effort to collect and distribute a shared set of high quality depth
and intensity image data upon which, standard classification techniques might
be agreed.

As the calibre of camera hardware improves and capture techniques mature,
higher quality depth based data is likely to become available. Combining richer
data with some of the proposed recommendations may have the potential to
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greatly improve the ability to automatically recognise skin lesion structure and
form and in turn, help to fully automate the diagnosis process.
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9. Appendix

Feature Index

1. Mean spot height

2. µrS

µrT

3.
µgS

µrT

4. µbS

µrT

5. µrS

µgT

6.
µgS

µgT

7. µbS

µgT

8. µrS

µbT

9.
µgS

µbT

10. µbS

µbT

11.
σr

S

σr
T

12.
σg

S

σg
T

13.
σb

S

σb
T

14.
σz

S

σz
T

15. Peakandpitdensityr(σ = 0.5)

16. Peakandpitdensityg(σ = 0.5)

17. Peakandpitdensityb(σ = 0.5)

18. Peakandpitdensityz(σ = 0.5)

19. Peakandpitdensityr(σ = 1.0)

20. Peakandpitdensityg(σ = 1.0)

21. Peakandpitdensityb(σ = 1.0)

22. Peakandpitdensityz(σ = 1.0)

23. Peakandpitdensityr(σ = 2.0)
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24. Peakandpitdensityg(σ = 2.0)

25. Peakandpitdensityb(σ = 2.0)

26. Peakandpitdensityz(σ = 2.0)

27. ∆ spot diameter†

28. J1

29. J2

30. J3

† An experimental feature which was not used in the evaluation experiments.

Figure 9.1: Class distributions for features 1-4
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Figure 9.2: Class distributions for features 5-8



76 9. APPENDIX

Figure 9.3: Class distributions for features 9-12
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Figure 9.4: Class distributions for features 13-16
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Figure 9.5: Class distributions for features 17-20
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Figure 9.6: Class distributions for features 21-24
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Figure 9.7: Class distributions for features 25-28
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Figure 9.8: Class distributions for features 29-30

Figure 9.9: Synthetic intensity data for peaks and pits verification
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