Optimisation of Amino Acid Scoring Matrices
for Improved Protein Homologue Detection

Ketan Patel

Inteiferon ¢

MSc in Artificial Intelligence
Department of Artificial Intelligence
University of Edinburgh
1998



L3

E=S

]




Abstract

The problem of protein structure prediction remains one of the major un-
solved problems in structural biochemistry. The most successful method to
date for predicting protein tertiary structure from primary sequence data,
is homology modelling based on alignment with similar sequences of known
structure. The premier component utilised in this process is a scoring matrix
which determines how similar one protein is to another.

The aim of this work is to improve upon the scoring matrices currently
used, in an effort to detect proteins which are more distantly related to
each other. To this end an optimisation approach was taken, using a type
of evolutionary algorithm. Experiments were conducted to evolve both a
general scoring matrix, and a matrix which only detects a specific class of
protein.

The results showed that although the optimisation approach works, the
matrices derived were not superior to those already in use, however they were
competitive. Good results were achieved when optimising matrices to detect
a particular class of protein, and this suggests that a combination of such

matrices could be used as a set when performing homology searches.



: B B B E=R e E= s | 3 | ] EN EE e o 2EE o | - =1




Acknowledgements

I would first of all like to thank my supervisors, Bob Fisher, Andrew
Tuson and Andrew Coulson for their excellent guidance, advice and support
throughout the project. Thanks also to Shane Sturrock from the Biocom-
puting Research Unit for giving me access to a fast computer and the use
of the sss_align package. I would also like to thank Dr. Stephen Altschul
who helped me out on tricky theoretical questions. Finally I wish to thank
EPSRC for funding me.

1l



( ] B3 Bl | ] ]

r

.|

v



Contents

1 Introduction 1
1.1 The Problem . . ... ... ... ... ... ..., 1
1.2 Solving the problem by optimisation . ... .. .. ... ... 3

1.2.1 Aim of optimising scoring systems . . . . . . ... ... 3
1.3 The evolutionary approach to optimisation . . . . . . ... .. 3
1.4 Expectationsandresults . . .. ... ... ... .. ...... 4

2 Background to protein biochemistry 5

2.1 Proteins, what are they? . . . . . ... ... ... ....... 5
2.1.1 Chemistry . . . . .. .. .. ... 6
2.1.2 Structure . . . . . ... e 8

2.2 Importance of identifying protein structure . . . . . . . . . .. 9
221 Medicine . . . . . . ... e 9
2.2.2 Agriculture . . .. ... oo oL 10
223 Industry . ... ... ... .. 11

2.3 Protein homology modelling . . . . . ... ... ... ..... 11

2.4 Searching protein databases . . . . ... .. ... .. ..... 12

2.5 Summary .. .. .. e e e e e 13

3 Review of literature 15
3.1 Overview of scoring systems . . . . . ... ... ... ..... 15
3.2 Dynamic programming algorithms . . . . . .. .. .. ... .. 17

3.2.1 Global alignment . . . . ... ... ... 17
3.2.2 Localalignment . . . .. ... ... ... ........ 20

3.3 Methods for deriving scoring matrices . . . . . . . .. .. ... 21
3.3.1 Geneticcodescoring . . .. ... ... ... ... ... 21
3.3.2 Chemical similarity scoring . . . . . ... ... ..... 22
3.3.3 Observed substitution scoring schemes . . ... .. .. 22

3.4 Comparison of matrices. . . . . .. ... ... ... ... ... 26
3.4.1 What makes a good matrix? . . . .. ... .. ... .. 28
3.4.2 Different matrices for different tasks? . . . ... .. .. 29



3.5 Summary . ... ...

Design of the optimiser
4.1 Problem formulation . .. ... ... .. .. ... .......
4.2 Choosing a suitable algorithm . . . . .. .. ... ... ... ..
4.3 Differential evolution . . . . . .. ... ... ... ... ..
4.3.1 The DE algorithm . . . .. ... ... .........
4.4 Design of representation and operators . . . . . ... ... ..
44.1 Encoding of matrix features . . . . .. .. .. ... ..
442 Moveoperators . . . .. ... ... oo
4.5 Evaluation of weight matrices . . . . .. ... .. ... ....
4.6 Parameters . . . . . . . . .. ...
4.7 Implementation . . . . ... ... ... Lo
4.7.1 Hardware . ... ... . ... ..o
472 Software . . . . . . . . ...
4.8 SUMMATY . . . . . v i e e e e e e

Design of the evaluation function
5.1 Possible approaches to evaluating matrices . . . . . ... ...
5.1.1 Using statistical models . . . . .. ... ... ... ..
5.1.2 Using results of database searches . . . . . ... .. ..
5.2 Final choice of evaluation function. . . . . .. ... ... ...
52.1 Howitworks . . ... ... ... ... ... ....
5.2.2 The sss_align program . . . . .. ... ... ... ...
5.2.3 Evaluation time . . . . . . .. ... ... .. .. ...
5.3 Subset selection methods . . . . . ... ... ... ... ...
5.3.1 Subsetsize. .. .. ... .. ... ... ... ...
5.4 Trainingdata . . .. .. ... ... ... ... . ...
5.4.1 Which proteins should we include? . . ... ... ...
54.2 The SCOP database . . ... ..............
5.5 Preparation of trainingdata . . . ... ... .. ... ... ..
5.6 Problems with trainingdata . . . ... ... .. ... .....
5.7 Summary . . .. . ... e e

Results

6.1 Experimental approach . . . . .. .. ... ... ... .....

6.2 Choice of parameters . . . . . . ... ... ... ... .....
6.2.1 Preliminary experiments . . . ... ... ........

6.3 Results. . .. .. ... .. ... .. ..
6.3.1 Results for first set of experiments . . . . . .. ... ..
6.3.2 Discussion . . .. !V, ... ... wismssweaes .

vi

31
31
32
34
34
36
37
37
38
38
39
39
39
40

41
41
42
43
44
45
48
48
48
50
51
ol
51
53
54
o4



6.3.3 Validation tests for first set of experiments . . . . . . .

6.3.4 Discussion of test results . . . . . . ..
6.3.5 Results for second set of experiments .
6.3.6 Discussion . . . . .. .. ... .. ...

6.3.7 Validation tests for second set of experiments . . . . .

6.3.8 Discussion of test results . . . . . . ..
6.4 Analysisofresults. . . ... .. ........
6.4.1 Significance of results . . . . . . .. ..
6.5 Summary . .. ... ... ...

7 Conclusion
7.1 Aims and achievements . . . . . ... ... ..
7.1.1 Objectives . . . . . ... ... .....
7.1.2 Achievements . . .. ... ... ....
7.2 Significant results . . . ... ..o
7.3 Furtherwork ... ...............
7.4 Concluding remarks . . . . ... .. ... ...

Appendices
A The best evolved matrices

B Training and test data
B.1 Training data for general matrix . . . . . . . .
B.2 Test data for general matrix . . . .. .. ...
B.3 Training data for specific matrix: SCOP class 1
B.4 Testing data for specific matrix: SCOP class 1
B.5 Training data for specific matrix: SCOP class 3
B.6 Testing data for specific matrix: SCOP class 3

C Glossary

vil

81

83

87
87
89
91
92
93
95

97



E= E

=

—_— o O BE=ot

: B = = R === == R ===




List of Figures

5.1

6.1
6.2

[lustration of the basic information flow within a cell . . . . . 6
A small polypeptide chain . . . . . . . ... ... ....... 7
The three dimensional structure of Hemoglobin. . . . . . . .. 10
The difference between Global and Local Alignment. . . . . . 18
Array used to perform dynamic programming algorithm . . . . 20
A Phylogenetic tree. . . . . .. ... o oL, 24
Plots of results from a database search . . . .. .. ... ... 30
The evaluation process . . . . . . . . .. ... ... ... 49
Comparison of convergence with and without seed matrix . . . 57
Graph showing convergence for run2 (SCOP class 1) . . . .. 62

1x



o e = B | —_ = E




List of Tables

Do
—

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Single letter codes for each amino acid. . . . . . ... .. ...

The PAM250 scoring matrix . . . . . . . .. ... ... ....

Parameters for the first set of experiments . . . . . ... ...
Parameters for the second set of experiments . . . . . . . ...
Results for the first set of experiments using the training data
Test results for the general set of matrices. . . . . . .. . ...
Results for SCOP Class 1 experiments on training data . . . .
Results for SCOP Class 3 experiments on training data . . . .
Results for SCOP Class 1 experiments on the test data . . . .
Results for SCOP Class 3 experiments on the test data . . . .

The best general scoring matrix (evolved in rund) . . ... ..

The best scoring matrix for SCOP class1 . . . .. ... ...

x1

9



 — | — =0 | — | | B | == e, | = ;| [ | smae | e = o = == ===




Chapter 1
Introduction

This chapter gives an introduction to the problem of protein structure pre-
diction (Section 1.1), and in particular the technique of homology modelling.
Section 1.2 talks about one way in which we could improve this technique,
and the reasons for doing so. The methods used in this work are overviewed
in Section 1.3. Finally what we expect to find, and the results of the work

are discussed in Section 1.4.

1.1 The Problem

The problem of protein structure prediction remains one of the major un-
solved problems in structural biochemistry. The problem is to predict the
three-dimensional structure of a protein from its one dimensional amino acid
sequence. The sequence consists of a string of letters; each letter represents
one amino acid (there are 20 different types). This sequence contains in-
formation on how the protein will fold, and thus is the key to identifying the
structure of an unknown protein. Chapter 2 gives an introduction to protein
biochemistry.

The principal real-world application of protein structure determination

and model building is in designing drug agents to interact with new diseases.

1



Once the 3-D structure of a malevolent protein is known, then chemists can go
about designing a suitable molecule to stop that protein from working, thus
fighting the disease. Also it is important to find out how different proteins
are related, as this can give some ideas as to the evolution of different species,
and the relationships between them.

There are several methods which have been developed to solve the prob-
lem of protein structure prediction, however no one technique can take the
credit for solving the problem in its entirety. There are algorithms for pre-
dicting the secondary structure (see Section 2.1.2) of a protein from its amino
acid sequence, the current accuracy is about 70% [Rost & Sander 93]. How-
ever to build an accurate model of the active site for the purposes of designing
drugs, the biologist must have the tertiary (3D) structure (see Section 2.1.2)

of the protein. There are different ways that this can be done, these include:
e Ab Initio methods: simulation of the folding process.
e Fold Threading: Hidden Markov Model based methods [Krogh et al. 94].
e Fold Recognition methods: Homology modelling.

Currently the most productive technique [CAS96] is to compare a new se-
quence against a database of sequences which have a known structure. If this
comparison yields a protein from the same ‘family’ as the unknown protein,
straightforward methods can be used to construct a useful 3-D model. The
process is known as homology modelling. Similarity between two proteins
is defined by aligning the sequences and summing scores taken from weight
matrices to ‘score’ the relatedness of each pair of amino acids. We discuss
this process in detail in Chapter 3.

By improving these weight matrices, we can improve the detection of
proteins which are distantly related, but are still structurally similar. The
research described here aims to improve the detection of distantly related

proteins by optimising the weight matrices used in protein database searches.

2



1.2 Solving the problem by optimisation

The improvement of weight matrices has been done before using a variety of
methods (see Chapter 3). However a direct optimisation of weight matrices
has not been attempted. The research described here aims to show whether
or not it is possible to improve upon the current ‘state of the art’ weight

matrix, by using such an approach.

1.2.1 Aim of optimising scoring systems

So what are we trying to achieve? At present there are hundreds of new
proteins being discovered each year, and some of these have no detectable
homologues. This is either because they are from an entirely new family of
protein, in which case there will be no homologues in the database, or they
are so distantly related that the search does not find the correct homologue.

It is this latter case that we hope to improve upon. If we can improve
the scoring matrix so that we can detect more distantly related proteins,
then this clearly would be advantageous. Once these cases are detected, the
structure of these unknown proteins could be predicted. Also it would help
biologists better understand how proteins are related to each other, and to

what extent the sequence determines the final structure.

1.3 The evolutionary approach to optimisa-
tion

Evolutionary computation (EC) approaches use search methods inspired by
natural evolution. The solution to a problem is formulated into some suit-
able representation, and then a population of solutions is evolved over many
generations, each generation becoming more ‘fitter’ than the previous one.

One component common to all EC algorithms is the generation of random

3



perturbations, or mutations, and the presence of a fitness function that is
used to assess the quality of a given point and filter out mutations that are
not useful.

Evolutionary computation techniques have many applications, and they
have been used extensively in optimisation. For example Genetic Algorithms
(GA’s) [Holland 75] have been used for a number of applications from optim-
ising aircraft wings, to improving job shop scheduling. In the canonical GA
the solution is represented as a coded binary string. Furthermore, in addi-
tion to mutations, new points are generated by a number of other operations
mimicking genetic operators and sexual reproduction, such as crossover.

Other evolutionary algorithms use different operators and representations
[Reeves 93]. The research presented here aims to use an EC approach to
optimise the weight matrices used in protein database searches. The choice
of which algorithm to use and the design of the representation and operators
is described in Chapter 4. The design of the fitness function is discussed in

Chapter 5.

1.4 Expectations and results

We expect to find that not much improvement can be made on a general
matrix for finding all proteins, because many matrices have already been
created for this purpose, and have been studied extensively (the reason for
this will be discussed in Chapter 3). However we can perhaps evolve matrices
which perform better for certain classes of protein. These matrices, could be
used as a set to detect distantly related proteins of the same class. The results
confirmed these hypotheses and can be found in Chapter 6. The significance

of these results and some ideas for further work are given in Chapter 7.



Chapter 2

Background to protein

biochemistry

In this chapter we give a brief introduction to protein biology, for further
information please refer to [Voet & Voet 95]. An introduction to what pro-
teins actually are is given in Section 2.1, this is followed by an introduction
to protein chemistry in Section 2.1.1. A description of protein structure is
given in Section 2.1.2, and we discuss the importance of identifying struc-
tures in Section 2.2. The technique of homology modelling is described in
Section 2.3, as one of the techniques which can enable prediction of protein
structure. The main tool used in such homology modelling is searching of

protein databases, and this is discussed in Section 2.4

2.1 Proteins, what are they?

Proteins are fundamental to all life and no sustained biological activity is
possible without them. They are the most abundant organic components of
cells and typically constitute 50% of the dry weight of the cell. Proteins come
in a vast array of different types, and it is estimated that there are between

10° and 10'2 different proteins in all living organisms. In the human body

5



transcription translation
DNA > RNA = PROTEIN

~_

reverse-transcription

Figure 2.1: Illustration of the basic information flow within a cell, reverse

transcription is also shown.

alone there are around 100,000 seperate types of protein.

Proteins are made by complex cellular machinery in each cell. Each pro-
tein is unique and is derived from the genetic sequence found in the DNA
of all cells. The DNA is first transcripted into RNA, this is then translated
into a code of amino-acids, each protein is defined by this amino-acid se-
quence (see Figure 2.1). This is the central dogma of molecular biology as
defined by Crick, one of the co-discoverers of DNA structure. The figure also
shows reverse transcription which only occurs in certain viruses known as

retroviruses, e.g. HIV.

2.1.1 Chemistry

Proteins are linear polymers of amino acids, and are made up of carbon, hy-
drogen, oxygen and nitrogen atoms, together with phosphorus and sulphur.
Amino acids possess an amino group, yHs, at one end of the molecule, and
a carbozl group, COOH, at the other (Figure 2.2 shows how two amino acids
can form peptide bonds to become a polypeptide chain). A single type of
protein always has the same number and composition of monomers, but
different proteins have a range of monomer units, from a few tens to approx-

imately a thousand. There are 20 types of amino acids which themselves



O R H
il |2 |
\2 HOOC
CH/ Ny
H
Amino
terminus Peptide bonds &?::I‘:]?;

Figure 2.2: A small polypeptide chain (a tripeptide), the peptide bonds show

where two amino acids have bonded together.

have a range of chemical properties. There is therefore a great diversity of
possible protein sequences and structures. The linear chains fold into specific
three-dimensional conformations (spatial arrangements), which are determ-
ined by the sequence of amino acids; proteins are generally self-folding. The
three-dimensional structures of proteins are therefore also extremely diverse,

ranging from completely fibrous, to globular.

Fibrous proteins are the basic structural elements in the connective tis-
sue of higher animals, they are usually physically tough and are insoluble
in aqueous solution. For example, Collagen is a fibrous protein found in
all multicellular animals, occurring in almost every tissue. It is the most
abundant vertebrate protein; approximately a quarter of mammalian protein
is collagen.

Globular proteins are tightly folded into compact globular or spherical
shapes which gives them more interesting chemical properties than fibrous
proteins. Globular proteins come in two types: those that naturally occur

in aqueous solution within the cell, and those that occur embedded in cell

7



membranes (for more on this see [Voet & Voet 95]).

Proteins unfolded in vitro! fold back to their original (or ‘native’) state
when solution conditions are returned to those in which the folded protein
exists. All the information for the native fold appears therefore to be con-
tained within the primary structure since proteins are self-folding (although
in vivo?, polypeptide folding is often assisted by additional molecules known
as molecular chaperones). This has the implication that if we know the amino
acid sequence of a protein then we must somehow be able to elucidate it’s
final three-dimensional structure from this information. As we shall see, this

is not as easy as it sounds.

2.1.2 Structure

The initial polypeptide chain is known as the primary structure of the protein.
This is usually given as a single sequence of one-letter amino-acid codes (see
Table 2.1). The protein can the be further analysed and can be divided into
regions of structural similarity. The secondary structure of a protein, breaks
it down into structural regions which are either alpha-helices, beta-sheets
or loops. The secondary structure can be fairly reliably predicted, since for
example only certain sequences of residues can form alpha-helices.

However the main interest to biologists is to predict the tertiary structure
(or 3D structure) of a protein (see Figure 2.3), since this gives us the most
pertinent clues as to the function of the protein. So far there has been no
reliable way to predict tertiary structure, and so protein structures need to
be determined. Protein structures can be determined to an atomic level by
X-ray diffraction and neutron-diffraction studies of crystallised proteins, and
more recently by nuclear magnetic resonance (NMR) spectroscopy of proteins

in solution. However there are many proteins whose structures cannot yet

Tn vitro means ‘In the test tube.’
2In vivo means ‘in a living system’.



Alanine Leucine

Arginine Lysine

Asparagine Methionine

Aspartate Phenylalanine

Glutamate Serine

Glutamine Threonine

Glycine Tryptophan

Histidine

A
R
N
D
Cysteine C Proline
E
Q
G
H Tyrosine
I

< < = 3 ®»w Y™ ZE2 R -

Isoleucine Valine

Table 2.1: Single letter codes for each amino acid.

be determined. For a more detailed introduction to protein structure, please

refer to [Branden & Tooze 91].

2.2 Importance of identifying protein struc-

ture

So why is this problem so important? The benefits of protein structure
identification cannot be overstated, to illustrate this here are a few ways in

which the technology can or has already been used.

2.2.1 Medicine

The understanding of enzyme function allows the design of drugs which in-
hibit specific enzyme targets for therapeutic purposes. Proteins can them-
selves be designed to an extent; for example, a current area of research focuses

on the engineering of insulin so that it dissociates into its active form more

9



Figure 2.3: The three dimensional structure of Hemoglobin.

readily, and therefore would quicken its response if injected into a diabetic
patient. Gene technology has also allowed the mass production of human

insulin in microorganisms, for use in the treatment of diabetes.

2.2.2 Agriculture

Just as therapeutic proteins and drugs can be produced for medical and
vetinary purposes, so can knowledge of protein structure and function be
used to treat diseases of plants, and to modify growth and development of

crops; for example the production of stay-ripe fruits.

10



2.2.3 Industry

Protein engineering has potential for the synthesis of enzymes to carry out
various industrial processes on a mass scale. For instance, there is currently
a good deal of research into the use of lipases for the industrial breakdown
of fats. A domestic example of the application of protein science is the

introduction of biological detergents, containing enzymes.

2.3 Protein homology modelling

There is a practically infinite number of different possible primary structures;
this is the basis for the great diversity of three-dimensional structures, and
functions, of proteins. Consider how many different primary structures are
possible for a polypeptide of 200 residues (which is in fact a relatively small
polypeptide in terms of those found in nature; polypeptides of over 1,000
residues exist). From the size of the number above, it is apparent that only a
fraction of possible primary structures actually exist (or have ever existed).

As a corollory it is very unlikely that two proteins with similar amino
acid sequences have independently evolved. Such similarities therefore in-
dicate that the two proteins must be related and share a common ancestor.
Related proteins are termed homologous. Over evolutionary time-spans, pro-
teins mutate: i.e. their primary structure becomes altered, generally by one
amino acid at a time (although more drastic single modifications can also
occur). Such alterations are caused by mutations in the genes (linear se-
quences of nucleotides) which encode them. Not only point mutations (the
substitution of one amino acid for another) occur; a protein sequence may
lose some of its amino acids (deletion mutation) or have amino acids inserted
(insertion mutation). However, if two primary sequences are more than ap-
proximately 20% identical (making reasonable allowance for insertions and

deletions) then they can be assumed to be homologous.

11



In order to build a model based on homology, one first needs to determ-
ine a homologue which has a close relationship to the protein of unknown
structure. Once a homologue has been found, this can be used to build a
model of the unknown protein. As the homologue should have the same basic
structure as the unknown protein, the biologist can then use the structure
of the known protein, as a guide when doing experiments. These will then
determine the essential differences between the two proteins. Once these dif-
ferences are known, then an accurate model can be built and used as a tool

for subsequent study.

2.4 Searching protein databases

The main way to establish homology between two proteins is to directly com-
pare their amino acid sequences. This can be done with any two proteins,
using a scoring system which determines whether one protein is indeed sim-
ilar to the other. This search is often performed using a database of proteins
with known three-dimensional structure. The unknown sequence is com-
pared against every member of the database, and the entry which achieves
the highest score is the most similar. This is similar to case based reasoning
[Kolodner 93], where a database of known cases is used to identify an un-
known case, by matching a set of features. In this case the set of features is
determined to some extent by the scoring system used.

Of course the scores achieved are highly dependent on the type of scoring
system used, and it is this scoring system which we seek to improve. In this
work, all algorithms to compare protein sequences rely on some scheme to
score the comparisons of each of the 210 possible pairs of amino acids (i.e.
190 pairs of different amino acids + 20 pairs of identical amino acids). Most
scoring schemes represent the 210 pairs of scores as a 20 by 20 symmetric

matrix of similarities where identical amino acids and those of similar char-

12



acter give higher scores compared to those of different character. (see Table
2.2 for an example scoring matrix).

The most simple scoring scheme is to score a ‘1’ for each match, i.e. each
pair-wise comparison which has the same amino-acid residue, and a ‘0’ for
each mismatch, such a system does not need a matrix of similarity scores.
This identity scoring system gives us the percentage identity of two sequences,
e.g. if two sequences were said to be 34% identical, then 34% of their amino-
acid residues match. However some proteins are less than 20% identical, but
have still been proved to be homologous (using more traditional methods).
To identify similarities between these proteins is difficult, and calls for more
complex scoring schemes. These scoring schemes do make use of similarity
scoring weight matrices. Each value in the matrix indicates how similar a
particular residue pair is. The way in which these matrices are derived is

introduced and discussed in Chapter 3.

2.5 Summary

To summarise, proteins are linear polypeptide chains of amino acids. There
are 20 different types of amino acid, and these for peptide bonds to become
polypeptide chains. These chains then fold into complex three-dimensional
structures and become proteins. Protein structure determination has many
useful applications in medicine, agriculture and industry. One method to
solve the 3D structure of an unknown protein is to look for similar proteins
of known structure. This similar protein can be used to build a model of the
protein whose structure is not known. The method for finding homologues
of proteins, is to search for them in a large database of proteins whose 3D
structure is known. A scoring system is used to detect whether a certain
protein is homologous or not. This scoring system usually takes the form

of a set of scores for each amino acid substitution found in the comparison

13



17

-7

-5

-1
-2

-2
2

-2
-5

-1
-6

-2
4

-2
-1

-1

-5

-2
-2

-2
2
-4

-1

0
-2
-4

-2
-2

0

4
-6

-3

-2
-2

0

-3
-4

-2
-3
-2
-4
-3

0
-1
-3

-1
-7

-2
1
-5
2
0

4
4
-4

-1
1

-3

-2

-3
-2

-1

-2
-7

-5

-2

-4
-3

-1

-1

-2
-7

12

-4

-2

6
-5

-2

-3

-2
-7

-2

-3

-1

2
-1

-2

0
-6

C

F

L

R

w

Y-30-4—47-50-1-5-1-3-2-5—4—5—3—3-2110]

T VvV W Y

I K L M NP Q R S

A C D E F G H

Table 2.2: The PAM250 scoring matrix

between the two sequences.

14



Chapter 3

Review of literature

In this chapter we will review the literature on scoring matrices and also
sequence comparison. An overview of scoring systems is then given in Section
3.1, followed by a discussion on algorithms which use these scoring systems in
Section 3.2. The methods used to derive the scoring matrices are described in
Section 3.3. Finally the comparison of such matrices is discussed in Section

3.4, this is then followed by a brief summary.

3.1 Overview of scoring systems

A scoring scheme in the context of protein database searches is usually a 20
by 20 symmetric matrix of scores, which tells us how similar an amino acid
is to another. There are well formed theories on how these matrices should
be calculated. These are discussed in detail in Section 3.3 below. Essentially
the scores can be represented as implicit target frequencies, which specify
the probability of the juxtaposition of two amino acids [Altschul 91]. Thus
the matrix gives us an indication of how similar one protein sequence is to
another.

The complexity of the matrix determines how sensitive it is. For example

if we used a simple identity matrix, then the score would tell us how similar

15



two matrices were, simply based on their identity (i.e. A’s matching with
A’s, B’s matching with B’s etc.). This method was used early on, to define
homology of two proteins. However more recently it has been found that
sequences diverging greatly in identity (i.e. less than 20% identical), are
still structurally homologous. It is clear that the information must lie in the
sequence somewhere, so more sophisticated scoring schemes were developed.
These have different scores for all combinations of amino acids, and represent
the likelihood that one amino can be changed into another one, without
loss or change of function. This could happen as a result of evolution, as
the genetic sequence is mutated over time. Thus two sequences which were
related closely (by identity) can, as a result of evolution, diverge but still

retain similar structural characteristics.

Also there is the problem of gaps. Sometimes two sequences are similar in
places, but have gaps where amino-acids have been deleted, or extra segments
where amino-acids have been inserted. These are known as insertions and
deletions and are a very common phenomenon. The scoring system must
take these into account, since two sequences which have similar parts of their
sequence (perhaps with a gap in the middle), may have a high structural
similarity. These indels (as they are known) are represented as gap penalties
in the scoring system, and are usually fixed. So every time there is a gap
a penalty is deducted from the score, the penalty is usually proportional to
the length of the gap. There are two types of gap penalties, normal gap
costs have the same penalty for starting a gap as they do for extending the
gap. Affine gap costs, however, have different penalties for starting and
extending gaps. Affine gap costs are more biologically meaningful, since two
consecutive gaps score higher than two isolated gaps. The processing of gaps
is very important to the scoring scheme, as you very rarely get homologous

proteins which have the same length.

16



3.2 Dynamic programming algorithms

The main method for assessing the similarity of two sequences is by per-
forming a sequence alignment, using the scoring system of your choice. The
original sequence alignment algorithm assessed the distance between two pro-
teins by performing a pairwise comparison of the amino acid residues. As
discussed above, the problem with comparing protein sequences is that you
are very unlikely to get two sequences of the same length. Thus the alignment
algorithm needs to take this into account (using the gap penalties given).
The naive approach to finding the best alignment of two sequences including
gaps is to generate all possible alignments, add up the score for equivalencing
each amino acid pair in each alignment, then select the highest scoring align-
ment. However, for two sequences of 100 residues there are > 1075 alternative
alignments, so such an approach would be time consuming and infeasible for
longer sequences. Fortunately, there is a group of algorithms that can cal-
culate the best score and alignment in the order of mn steps, where m and
n are the sequence lengths. These Dynamic Programming algorithms were
first developed for protein sequence comparison by Needleman and Wunsch
[Needleman & Wunsch 70], though similar methods were independently de-
vised during the late 1960’s and early 1960’s for use in the fields of speech

processing and computer science (see [Sankoff & Kruskal 83]).

3.2.1 Global alignment

Dynamic programming algorithms may be divided into those that find a
global alignment of the sequences and those that find local alignments. A
global alignment is across the whole of the two sequences, and a local align-
ment only covers parts of the two sequences (as shown in Figure 3.1). So
what does an alignment look like? Below is an alignment generated by the

sss_align program [Sturrock 97}.

17



‘ Global AlgTIEE

—_—
~NN S/
—_—

‘. Local Aligrmert

Figure 3.1: The difference between Global and Local Alignment.

SEQ IDENTITY 56.00%; SEQ CONSERVATION 60.00%;

Matches 14; Conservative 1; Mismatches 10; Indels 2; Gaps 2;

tt ttt
Db 1 CKLKGQSCRKTSYDCCSGSCGRSGK-C 26
I e N B N R I N O
Qy 1 CKSXGSSCSXTSYNCCR-SCNXYTKRC 26

The matches are indicated by the vertical lines, and the mismatches are
indicated by the gaps, single dots and double dots. This notation indicates

the degree of similarity between the two mismatching residues. Gaps are

18



indicated by the dashed lines, and it is clear that the alignment is between
two sequences of differing length.

The dynamic programming algorithm finds the optimal alignment as fol-
lows. In order to optimise the distance, a value is give to each point in the
alignment (i.e. each juxtaposition of amino acids). The value depends on
whether there was a match, indel or substitution. The maximum of these
values is taken at each point. We want the maximum because we want to
find the alignment with the best score (i.e. the optimal alignment). Let the
two sequences of length m and n be A = (A, Ay, ...A), B = (By, B, ...By)
and the symbol for a single gap be A. At each aligned position there are

three possible events.
1. w(A;, B;) substitution of A; by B;.
2. w(A;, A) deletion of A;.
3. w(A, B;) deletion of B;.

The substitution weight w(A;, B;) is derived from the chosen scoring
scheme. Gaps A are normally given a negative weight (the gap penalty),
since insertions and deletions are usually less common than substitutions.

The maximum score M for the alignment of A with B may be represen-
ted as s(A1..m,B1..). This may be found by working forward along each
sequence, successively finding the best score for aligning A; ; with B, ; for
all i,j where 1 < 4 < m and 1 < j < n. The values of s(4;. ;, B..;) are

stored in a matrix H where each element of H is calculated as follows :

H; -1+ wa; B
H; ; = maz Hi_1;+wan
H;j 1+ wa, s
The element H,,, contains the best score for the alignment of the com-

plete sequences. The matrix H is illustrated in Figure 3.2. If the alignment

19



Corner 0 Ce n

MARGIN -—— ROWO

2" 03P

BODY

m L\

\
COLUMN 0

Figure 3.2: Array used to perform dynamic programming algorithm

is required as well as the best score, then the alignment path may be determ-
ined by tracing back through the H matrix, usually this is done by using
pointers which were generated when the alignment was done. These pointers

show which of the three choices was taken at each cell in the matrix.

3.2.2 Local alignment

The above algorithm is a global alignment algorithm, because it aligns the
whole of sequences A and B. In practice this is not very useful, since many
proteins with similar structures sometimes have poor global alignments. It is
better to test whether a portion of sequence A, is similar to a portion of se-
quence B. This is called local alignment, and yields matches which potentially
have similar structures, because components of their sequence match.

An algorithm which searches for common subsequences in proteins was

devised by Smith and Waterman [Smith & Waterman 81]. This algorithm is

20



essentially the same as the global alignment algorithm given above, except a

zero is added to the recurrence equation.

'4

Hi 11+ wa;B;
Hioyj+wa,a
H; ; = max <
H;; 1+ wa,B;

0

\

Thus all H; ; must have a value >= 0. The score for the best local align-
ment is simply the largest value of H and the corresponding alignment is
obtained by tracing back from this cell. You can also find the next most op-
timal alignment by taking the second largest value of H and tracing back from
this cell. In this way you can generate the n most optimal local alignments

from the same matrix H.

3.3 Methods for deriving scoring matrices

In this section we discuss the different types of scoring matrix available, and
how they were derived. We also discuss how scoring systems can be compared
and evaluated, since this is an important part of our optimisation process.
We have already mentioned the simple identity scoring scheme, we now go

on to more sophisticated schemes.

3.3.1 Genetic code scoring

The genetic code scoring scheme was introduced by Fitch [Fitch 66]. It
weights substitution by considering the minimum number of DNA/RNA base
changes (0,1,2 or 3) that would be required to interconvert the codons for the

two amino acids'. The scheme has been used in the construction of phylo-

!Each amino acid is coded in the DNA/RNA by three bases, these are known as codons.

There is more than one possible combination of the three codons to make the same amino

21



genetic trees (see Section 3.3.3 below) and in the determination of homo-
logy between protein sequences having similar three dimensional structures.
However today it is rarely the first choice for scoring alignments of protein

sequences.

3.3.2 Chemical similarity scoring

The aim with chemical similarity scoring schemes [McLachlan 72],{Feng et al. 84]
is to give greater weight to the alignment of amino-acids with similar physico-
chemical properties. This is desirable because major changes in amino acid
type could reduce the ability of the protein to perform its biological role and
hence the protein would be selected against during the course of evolution.
For example some amino acids are hydrophilic which means they are attrac-
ted to water molecules, and some are hydrophobic which is the opposite.
Now if an amino acid in one protein is hydrophilic, and the same residue
in the other protein is hydrophobic, then this substitution should get a low

score, since it would not be selected by evolution.

3.3.3 Observed substitution scoring schemes

Scoring schemes based on observed substitutions are derived by analysing
the substitution frequencies seen in alignments of known sequences. In
[Altschul 91], it is argued that all scoring schemes can be represented as im-
plicit substitution frequencies, so by taking the inverse of this we can generate
a scoring scheme by looking at the probabilities of observed substitutions.
This is something of a chicken and egg problem, since in order to generate the
alignments, one really needs a scoring scheme but in order to derive a scoring
scheme one needs the alignments! Early schemes based on observed substi-

tutions worked from closely related sequences that could easily be aligned

acid.

22



by eye. More recent schemes have had the benefit of the earlier substitution
matrices to generate alignments on which to build. Long experience with
scoring schemes based on observed substitutions suggests that they are su-
perior to simple identity, genetic code, or intuitive physico-chemical property

schemes.

The Dayhoff matrix

Possibly the most widely used scheme for scoring amino acid pairs is that de-
veloped by Dayhoff and co-workers [Dayhoff et al. 72] and [Dayhoff et al. 78].
The system arose out of a general model for the evolution of proteins. The
model is based on accepted point mutations (or PAMs). An accepted point
mutation is an exchange of one amino-acid for another, accepted by natural
selection. Dayhoff and co-workers examined alignments of closely similar se-
quences where the likelihood of a particular mutation (e.g. A-D) being the
result of a set of successive mutations (e.g. A-x-y-D) was low. These muta-
tions were observed using phylogenetic trees (see Figure 3.3), and a few pairs
of related sequences. Since relatively few families were considered, the res-
ulting matrix of accepted point mutations included a large number of entries
equal to 0 or 1. A complete picture of the mutation process including those
amino-acids which did not change was determined by calculating the average
ratio of the number of changes a particular amino-acid type underwent to the
total number of amino acids of that type present in the database. This ratio
is called the relative mutability. This was combined with the point mutation
data to give the mutation probability matrix (M) where each element M; ;
gives the probability of the amino acid in column j mutating to the amino
acid in row 4 after a particular evolutionary time, for example after 2 PAM
(Percentage of Acceptable point Mutations per 108 years).

When used for the comparison of protein sequences, the mutation prob-

ability matrix is normalised by dividing each element M;; by the relative

23



observed —= ACGH DBGH ADIJ CBIJ
sequences

Inferred
ancestors

Figure 3.3: A Phylogenetic tree.

frequency of exposure to mutation of the amino acid 7. This operation res-
ults in the symmetrical ‘relatedness odds matrix’ with each element giving
the probability of amino acid replacement per occurence of i per occurence
of 7. The logarithm of each element is taken to allow probabilities to be
summed over a series of amino acids rather than requiring multiplication.
The resulting matrix is the log-odds matriz which is frequently referred to as
Dayhoff’s matriz and often used at a distance of close to 256 PAM since this
lies near the limit of detection of distant relationships where approximately
80% of the amino acid positions are observed to have changed. Others have
argued that other PAM distances are better, e.g. Altschul in his 1991 paper
[Altschul 91] stipulated that the PAM 120 matrix was the best for detecting

homologues to unknown proteins.

Limitations of the Dayhoff model

Since the Dayhoff matrix is based on an evolutionary model, the matrix is
limited in that it is based on a model which makes certain assumptions.

Assumptions made in the derivation model of the PAM series of matrices

24



include :

1. Replacement at any site depends only on the amino acid at that site

and the probability given by the table.

2. Sequences that are being compared have average amino acid composi-

tion. This is an ideal which does not exist in the real world.
Sources of error in the evolutionary model include :

1. Many sequences depart from average composition.

2. Rare replacements were observed too infrequently to resolve relative

probabilities accurately.
3. Errors in 1 PAM are magnified in the extrapolation to 250 PAM.

4. The Markovian process is an imperfect representation of evolution :
distantly related sequences usually have islands (blocks) of conserved
residues. This implies that replacement is not equally probable over

the entire sequence.

5. In the Dayhoff model evolutionary distance is used as a proxy for struc-

tural relatedness, however these two may not always correspond.

These are some of the weaknesses we hope to overcome when we use direct

optimisation to produce a scoring matrix.

Other matrices based on observed substitutions

There have been several other matrices which are also based on observed sub-
stitutions. A popular matrix is the BLOSUM matrix [Henikoff & Henikoff 92],
which is based on multiple alignments of several ungapped sequences. The

sequences were more distantly related to each other, and were clustered into

25



groups where the sequences are similar at some threshold value of percentage
identity. Substitution frequencies for all pairs of amino acids were then cal-
culated between groups and this was used to calculate a log odds BLOSUM
(BLOcks SUbstitution Matrix) matrix. Different matrices are obtained by
varying the clustering threshold. For example, the BLOSUM 80 matrix was
derived using a threshold of 80% identity.

Another matrix of interest is the PET91 matrix, which was derived by
Jones et. al. [Jones et al. 92]. This matrix was derived using the same
methods as the Dayhoff Matrix, but with different data. The original Dayhoff
matrix was constructed using a relatively small set of sequences. Many of the
190 possible substitutions were not observed at all and so suitable weights
were determined indirectly. The PET91 matrix was derived by examining
2,621 families of sequences in the SWISSPROT database release 15.0. The
principal differences between the PET91 matrix and the Dayhoftf matrix are
for substitutions that were poorly represented in the 1978 study. However,
the overall character of the matrices is similar. Both reflect substitutions
that conserve size and hydrophobicity, which are the principal properties of

the amino acids.

3.4 Comparison of matrices

Various studies have been conducted to find which of the different scoring
systems is the best. The consensus with all studies is that there is no one
matrix which can be used to solve all problems.

Vogt, Etzold and Argos [Vogt et al. 95] did an extensive comparison of
various matrices. They used a total of 80 matrices, which were applied to
37 protein families, containing 204 sequences, which allowed 1064 distinct
pairwise alignments. For each matrix, gap penalties were optimised to achieve

the best percentage of correctly aligned residues relative to standards-of-truth

26



derived from protein tertiary structural superposition?. They found that the
best performing matrix was that derived by Gonnet et al. [Gonnet et al. 92].
It was built from a sequence database with 8,344,353 amino acid residues.
Each sequence was compared against the entire database, such that 1.7 x 108
subsequence matches resulted for the significant alignments. These matches
were subsequently used to generate a matrix with a PAM distance of 250.

Henikoff and Henikoff [Henikoff & Henikoff 93] evaluated several substi-
tution matrices in their ability to recognise distantly related proteins. They
evaluated sequence and structure based matrices as well as extrapolated
matrices based on evolutionary models such as the PAM series. They focused
on recognition of distantly related proteins (and not sequence alignment ac-
curacy) by searching large sequence databases with a distant query sequence,
and checking how many true and false positives occurred within the top lis-
ted sequences with the most significant scores. They found the BLOSUMG62
matrix to perform best. The BLOSUMS0 matrix was the second best per-
former.

Altschul [Altschul 91] studied amino acid substitution matrices from an
information theoretic point of view. In this study the properties of matrices
were analysed in the context of local alignments lacking gaps. He concluded
that for protein databases of typical current size (about 1.7 x 107 residues),
the most broadly sensitive matrix should be a log-odds matrix of distance
PAM120. In order to detect short but strong homologies or long but weak
ones, this matrix should be complemented by the PAM40 and PAM250
matrices respectively. However this may not necessarily be the optimum
for local alignments with gaps (which a lot of database search algorithms

use).

“Of course, many database search methods, such as the FASTA

2This is where structures are compared by eye using molecular graphics, and other

tools.

27



programs, seek local alignments with gaps, and such measures are
potentially more sensitive to distant homologies. Unfortunately if
gaps with associated scores are allowed, the specific quantitative

discussion above is no longer correct.” [Altschul 91]

3.4.1 What makes a good matrix?

From the work of those cited above we can glean that there is no one matrix
that is suitable for all alignments. But how do we define a good matrix?
A good matrix is one that finds results which are statistically relevant, i.e.
the alignment cannot be by mere chance. For instance if we have a large
database (say 5,000 proteins), we need to determine whether the results of a
search are not just coincidences. This can be done by establishing a random
protein model, which generates random sequences, and aligning them with
the database. This will then tell us the level at which hits occur by chance.
If our results are beyond this level, then we can say they are true hits. For
the purposes of structure prediction, it is important to make this distinction,
since we do not know which protein we are searching for, and thus cannot

always decide whether it is a true hit or not just by looking at it.

So a good matrix is that which discriminates most accurately between
true and significant hits and random hits. We can think of this graphically,
since the results of a database search can be plotted, and are usually in the
shape of a poisson distribution (see Figure 3.4). The true hits lie in the tail
of the distribution, while the random hits (or noise) lie in the main body.
Usually the two overlap as shown in 3.4(a) and 3.4(b). Our task is to find a
matrix which better separates the tail from the body to achieve a distribution
like that of 3.4(c).

28



3.4.2 Different matrices for different tasks?

It has been suggested by some [Altschul et al. 94], that you should use dif-
ferent matrices for different tasks. It would be favourable to have just one
magic matrix which finds all homologues, because then you would only need
to make one database search. However in reality this is probably not possible,
so it might be better to have several matrices, which are adapted to look for
certain classes of protein. Then you could use these one at a time, until you
found a hit, this would at least tell you what class of protein you were dealing
with. Further searches could be performed using more specialised matrices,
and so on. This is one avenue we must consider if our efforts to create a good

general matrix fail.

3.5 Summary

To summarise, the main method to compare two protein sequences is to align
them using dynamic programming. This algorithm makes use of a scoring
matrix which contains values for each unique pair of amino acids. There
are many ways in which these scoring matrices can be derived, and the most
useful is by observing substitutions in alignments of proteins which are known
to be structurally similar. These observed substitutions are then used to
calculate the probabilities of two amino acids being mutated into each other.
The most popular matrix derived in this way is the Dayhoff matrix, which is
widely used. A good matrix is that which allows us to distinguish true ‘hits’,
i.e. the proteins which are actually similar in structure, from random hits,
which occur by chance. It has been suggested that in order to better achieve

this form of matrix, one should use specific matrices for specific tasks.

29



H (a)

{b)

Number of Sequences

H H”n... willms.. i

Alignment Scone

Figure 3.4: Plots of the database results, the dark bars represent ‘true’ hits,
the white bars represent noise. We would like to achieve complete seperation

as shown in (c).

30



Chapter 4
Design of the optimiser

In this chapter we formulate our problem in Section 4.1 and decide on a
type of evolutionary algorithm which is described in Section 4.3. The design
of representation and operators is discussed in Section 4.4, and finally the
details of the implementation are described in Section 4.7. This is followed

by a brief summary.

4.1 Problem formulation

Many optimisation problems can be cast as a search through a set of vectors of
real or integer valued parameters to find the vector which will maximise some
function. In our case the parameters are the matrix values, and the function
is the performance of such a matrix on finding proteins with low sequence
identity, but that have similar structure to our query protein. A large variety
of both local and global techniques with varying degrees of specialisation
have been proposed for tackling such problems [Tuson 98]. Evolutionary
algorithms have been regularly applied to such problems, due to their generic
nature (requiring only the ability to evaluate the function at any encoded
point).

For our problem the search space can be characterised as a search for a

31



set of integer values in a specific range (since the program we will be using
only allows matrices to be specified in integers). The set of values are the
components of a matrix M, which is symmetrical about its diagonal (see
Table 2.2). Each value in this matrix should be an integer X, ; € [—60, +20],
where 7,5 € [1,20]. The range restriction on X;; is due to the program
sss_align, which will make use of the matrix. This program only allows
matrix values within this range and also only allows integer values. This
constraint also narrows the search space to consider sensible values for X ;.

There is also a constraint on the diagonal elements of M, X;. Since this
is the score for a direct match in amino acids, it cannot be negative. So all
elements X;; must be positive. Any operators on the matrix must obey this
constraint, since if matrices have non-positive diagonal values they will be
useless.

This optimisation task can be recast as a minimisation problem minz(z)
where z(x) is the objective function which tells us how effective the matrix
is, and is a combination of cost functions. Of course you may just have one
cost function in which case that would be z(x). In the case of multiple cost
functions (for example if we had two fitness functions for the matrix), the

different cost functions can be combined as follows:

z(z) = Z_:l W frm ()

The weighting factors w,, are used to define the importance of the differ-
ent objectives f,,(). The minimisation of z(x) is thus the overall task for the

algorithm we choose to employ.

4.2 Choosing a suitable algorithm

Having decided to take the evolutionary optimisation approach, one has to

decide on an algorithm which will be suitable for our problem. There are

32



several different flavours of evolutionary program, and they have all been
tried on a variety of problems. Since evolutionary algorithms are a form of
heuristic search, this leaves many choices at our disposal. One of the most
popular algorithm is the Genetic Algorithm (or GA) [Holland 75] and there
are several different flavours of this algorithm. The canonical GA uses binary
string representations of the problem and maintains a population of these.
Every generation, members of the population are made to ‘reproduce’ and
mutate and then they are evaluated. The fitness of each member is then used
to determine which members go on to the next generation and which do not.
As in real evolution, survival of the fittest applies and eventually a ‘good’
solution will hopefully emerge. The advantage of using binary strings is that
this representation lends itself well to theoretical analysis and allows the
construction of elegant genetic operators. Thus the bit string representation
of solutions has dominated genetic algorithm research. For some optimisa-
tion problems however (such as multidimensional, high-precision numerical
problems), genetic algorithms perform poorly. However the power of the
evolutionary algorithm does not depend on using bit strings and so the use
of real-coded or floating-point genes has been developed [Michalewicz 96].
Since our problem is to evolve a matrix of integer values, it would be bet-
ter to use an algorithm which manipulates members which are not binary

strings.

Fortunately there are many algorithms which cope with real or integer val-
ued population members. Evolution strategies [Béack et al. 91] were among
the first algorithms which used a real valued representation. One of the more
recent algorithms is Differential Evolution (or DE) [Storn & Price 95], and
this has proven a very efficient algorithm for continuous search space op-
timisation problems [Storn & Price 96]. It has proven to more efficient than
other state of the art heuristic search techniques such as Adaptive Simulated

Annealing [Ingber & Rosen 92], on the general test suite of De Jong func-

33



tions. This algorithm is a variant of GA’s and is very simple. The advantage
is that as long as we have a suitable objective function, any sort of real or
integer valued representation can be used (in our case a 20 by 20 matrix of

integers).

4.3 Differential evolution

Differential Evolution is similar to the original GA in that the general process
is a simulation of the evolutionary process. A set of population members is
maintained and operators are applied to mutate these members. The popu-
lation is then ranked according to fitness and ‘bad’ members are discarded.
This is where the similarity ends, however. DE uses a non binary representa-
tion, and uses a new form of mutation, and no crossover (although crossover
can be included). At each generation a random member of the population
is mutated, and then the mutated member is compared against the current
member of the population. If the mutant is better then it is inserted into the
next generation; if not then the old member is inserted. This happens for

each population member. Over many generations the best solution emerges.

4.3.1 The DE algorithm

The basic DE strategy employs the difference of two randomly selected vec-
tors (in our case matrices) as the source of random variations for a third
vector. So initially one starts off with a population of random vectors, or in
case a preliminary solution is available, the initial population is generated
by adding random gaussian noise to the nominal solution X,y 0. DE then
generates new vectors by adding the weighted difference vector between two
population members to a third member. If the resulting vector yields a lower
objective function value than a predetermined population member, then the

newly generated vector replaces the one to which it was compared. There are

34



several variants of DE, but the one that was used in our experiments works
as follows : for each member z; g,i = 1,2,3, NP, a trial vector v is generated

according to

v = m1‘1,G + F'(x'rz,G - mrs,G))

The integers 71, 72 and 73 are chosen randomly from the interval [1, NP]
and are different from the running index i. NP is the number of population
members and G is the generation number. F is a real and constant factor
which controls the amplification of the differential variation (z., g — Zr;,q)-
This vector v is then compared to z;¢ and whichever is better is placed
into the next generation G + 1. For our problem the population vectors will
need to be represented in such a way as to allow the above operations. The
complete algorithm used in the experiments is give in Algorithm 1. Since we
are evolving a matrix of integers, the values for the mutant vector v must
also be integers. However the parameter F' is a real number (less than 1),
so the results of the calculations need to be rounded to the nearest whole

number.

Algorithm 1 Differential Evolution
for G = 0 to Genmax do

for i=0to NP do

Select 71, r9 and r3 randomly

Generate vector v = z,, ¢ + F.(Zr, .6 — Zry,6)
if eval(v) < eval(z;¢) then
Insert v into generation G + 1
else
Re-insert z; ¢ into generation G + 1
end if
end for

end for

35



4.4 Design of representation and operators

The structure of a solution vector in any search and optimisation problem
depends on the underlying problem. Our problem involves manipulating a
matrix of integer values. The representation must obey the constraints of the
problem, and also allow adequate manipulation of the population members

depending on which move operators are being used.

When designing a chromosome representation, we must consider how the
different parts of a population member interact, i.e. any dependencies which
they have on each other. For example when using binary string representa-
tions one needs to be careful that what happens to the string actually reflects
a proper and valid change to the actual solution after it is decoded from the
string representation. Mutation and crossover on the string may result in
invalid solutions which are useless. So it is beneficial to model these con-
straints as part of the representation. That way all vectors will be valid, and

we do not need to worry about getting ambiguous results.

The issue of which representation to use has been widely discussed (see
[Baeck et al. 97]), and there have been formal studies on the principles of
how one should choose a representation [Surry & Radcliffe 97]. However
these studies are still relatively new in the GA community and so the rep-
resentation given here is not based on any formal theory. Rather we will use
our problem and search strategy as a guide to designing the representation.
Given that we are using DE as our search strategy, a direct integer valued
representation would seem most appropriate. The authors of the system ori-
ginally designed it for the purpose of real parameter optimisation problems,
however we can modify the algorithm easily to cope with integer values. The
basic representation can be described as simply a 20 by 20 array of integer
values. The matrix has specific constraints and to cope with these the op-

erators that manipulate the array (and generate it) will need to take these

36



constraints into account.

4.4.1 Encoding of matrix features

The main feature of the matrix is that it is symmetrical about its diagonal,
and this is easy to encode into the representation. Since a square array is
being used to represent the matrix, all we need to make sure is that element
X;; equals element X;; when we are generating the initial matrices and
also if we are reading any matrices in from an external file. We could use
a non-square multi-dimensional array instead, but this is more complex to
manipulate and it is a trivial constraint anyway.

The other constraint is to make sure that all diagonal elements are pos-
itive. This is easy to do when generating the matrix initially, but we also
need to consider the fact that the matrices will be constantly changing due
to the genetic operators. Therefore this constraint was built into the move
operators, so that a check is made to see if any of the trial vectors disobeyed
this rule. If they did, the value of the offending element was changed to be
brought in line with the constraint. Also we use the same technique for all
elements in the array to obey the range constraint. The integer value in each
element must be between -60 and +20, so we need to check for this when
doing the addition. If the value is out of range, then it is capped at either

-60 or 4+20 so that the matrix will be valid.

4.4.2 Move operators

For the DE algorithm, the two main move operators are vector subtraction
and vector addition. Since we are manipulating matrices, these were imple-
mented using matrix subtraction and addition respectively. So for example to
subtract one matrix from another, each element was subtracted component

by component. This results in a third matrix which is the difference matrix,

37



and then this is added to the matrix which is being mutated.

A crossover operator was also constructed, although the original DE al-
gorithm does not use it. This was implemented using UNBLOX crossover,
where a square block of one matrix is subtracted from a similar square block
in another matrix. This difference block is then added to the matrix which
is being mutated.

To cope with the diagonal constraint, the addition operator checked when
adding to a diagonal element to make sure the result was valid. If the result
was negative, then it would replace the result with 1 instead (since the diag-
onal elements must be positive). A similar check was added to the add block
operator. The range constraint was also dealt with in this way, the values

being capped if they were out of range.

4.5 Evaluation of weight matrices

The evaluation function should indicate how good a matrix is at detecting
homologous proteins. In our case we should make sure that the evaluation
tests the ability to detect structurally similar proteins with low sequence
identity. The evaluation function should take as its input a matrix, and
produce as its output a value which is a measure of how good that matrix
is for our problem. This value is then used to compare two matrices during

evolution. The method of evaluation is discussed fully in Chapter 5.

4.6 Parameters

The DE algorithm and indeed many such algorithms have a number of para-
meters that must be chosen in order to run the optimisation experiments. For
example the value F which determines the proportion of the difference vector

which gets added to produce the trial vector. How is the initial population

38



generated? There is also the population size and number of generations to
consider. These parameters were chosen by performing a few preliminary
experiments and these are described in Chapter 6. Due to the fact that the
evaluation function was very computationally expensive (see Chapter 5), the
experiments were not run for hundreds of generations. Thus no stopping
criteria was implemented since convergence in a small number of generations
seemed unlikely. Instead the experiments were run for the full number of

generations, and then the results examined.

4.7 Implementation

The DE algorithm was implemented in C++ [Stroustrup 91], as this allows
one to define data structures and methods which manipulate those data struc-
tures collectively as objects. Thus the matrix which is the data object that
our optimiser manipulates, was defined as an object, with methods for the
operators of addition and subtraction. The DE algorithm was implemented
as an object which maintains the population of matrices using an array of

pointers..

4.7.1 Hardware

All software was developed on a DEC Alpha (533MHz SX 21164PC pro-
cessor), under the LINUX operating system, and the GNU C--+ compiler.

All subsequent experiments were also conducted on the above platform.

4.7.2 Software

The software was developed in stages. First the matrix class was written,
and tested independently, to make sure all the operators worked properly.

The operator overloading feature of C++ was used to implement the matrix

39



addition and subtraction operators. Next the differential evolution algorithm
was implemented and tested. A simple regression problem was used to test
the DE program. The solution vector was a set of real parameters, and the
program had to evolve a function which passed through all the points given.
The fitness function was the sum of the squared errors at each point. The

matrix class was then integrated with the DE program, and tested.

4.8 Summary

To summarise, the differential evolution algorithm was chosen to do the op-
timisation. The population members are 20 by 20 arrays of integers, and
have a few constraints. Each element of the array must be between -60
and +20, and all diagonal elements must be positive. The move operators
used by DE were programmed to manipulate these arrays. Addition and
subtraction were implemented as matrix addition and matrix subtraction,
where elements are added or subtracted component by component. The sys-
tem was implemented in stages each stage being tested independently before

integration.

40



Chapter 5

Design of the evaluation

function

This chapter gives a description of the design of the evaluation function used
to score the matrices. Possible approaches are discussed in Section 5.1. The
final evaluation function is described in Section 5.2. A method to minimise
evaluation time is described in Section 5.3, and the selection of training data

is discussed in Section 5.4. This is followed by a brief summary.

5.1 Possible approaches to evaluating matrices

Evaluating a protein scoring system is a tricky task since to evaluate it prop-
erly one should use it to search for a variety of proteins from more than one
database. However since we do not have time to do this for each matrix, we
must come up with a fast way of assessing whether a matrix is good for the
problem we are addressing.

There are two possible approaches to this problem. One is to use a direct
database search, using the matrix to be evaluated. Then the results of this
search would be used to score the matrix. This would probably have to be

done more than once, since only one protein can be searched for at a time.

41



So a good representative sample of proteins would need to be used, in order
to make sure that the matrix is adequate for all classes of proteins.

The other option is to use an analytical method for assessing the quality
of a matrix. Several studies have been done on how to assess if a result from a
search is statistically significant [Karlin & Altschul 90], [Karlin & Altschul 93],
[Altschul & Gish 96]. These techniques use a random model for proteins to
predict how many ‘hits’ can occur by chance, when searching large databases.
Given a non-random protein model (i.e. one that represents the proteins that
we are looking for), and a set of scores, we can use the same technique to
determine how good those scores are in the context of searching for that

particular set, of proteins.

5.1.1 Using statistical models

The statistical method given in [Karlin & Altschul 90] is for ungapped align-
ments only. It shows how, given a protein model, you can predict the num-
ber of Mazimal Segment Pairs (local alignments which give a high alignment
score) with a score of at least S, that are likely to occur by chance alone.
Consider two independent sequences with letter probabilities {py,...,p-}
and {p},...,p.}, respectively. The pair of letters a; of the first sequence and
a; of the second sequence occurs with probability p;p;. These probabilities
are chosen to reflect the observed frequencies of the amino acids in actual
proteins (see [McCaldon & Argos 88] for how these probabilities are derived).

The theory that follows makes two assumptions :
1. At least one positive score must be possible.
2. The expected score }_; ; p;pjs;; must be negative.

where s;; is the score for those two letters. Given a substitution matrix

and a random protein model, one can calculate the amino acid substitution

42



frequencies {g; ;} by using the formula :

Asi i

Gi,; = PiPj€
where ) is the unique positive solution to the equation:

Y pipjei =1

i,j
Given a random protein model any scoring matrix can be specified up to
a constant factor by its implicit target distribution for paired amino acids.
For our purpose we could reverse this and calculate the target frequencies
from the matrix to be evaluated and then compare these to a model of ‘ideal’
target frequencies.

There are problems with this approach however. First, the theory only
holds for ungapped alignments. Since we are interested in gapped align-
ments which are the most widely used, we need a theory which works for
these. The extra complexity of gap penalties has been analysed experi-
mentally [Karlin & Altschul 93] [Waterman & Vingron 94], and the results
do seem to concur with the theory above. However there are no tried and

tested formulas to calculate the values that we need [Altschul 98].

5.1.2 Using results of database searches

The ‘brute force’ method for assessing scoring matrices has always involved
using the matrices in real database searches. The advantage of this is that one
can be sure that the results are going to work in a real search environment,
as the matrix has already been trained and tested on real databases. The
disadvantage is that it takes time to do a database search, and since we are
going to be evaluating a lot of matrices we need to economise the amount of
time evaluating each one.

There are several points to consider when using this approach. For ex-
ample which algorithm do we use to do the matching, there are several al-

gorithms available. A popular alternative to dynamic programming is the

43



BLAST family of search tools [Altschul et al. 90] and there are also variants
of the original DP algorithms [Pearson & Miller 92]. The dynamic program-
ming method has been proved to be the most thorough [Sellers 80] and so
it would be most appropriate to use this as we can then say that for the
proteins that the matrix is trained on, a thorough search was performed and
the results were as we expected.

The final consideration is the choice of training data. If we are to use a
database search to evaluate the matrix, we need a query protein sequence
for which the search must produce good results. We need more than one of
these query sequences, otherwise the matrix we evolve will be very specific,
and only look for that type of protein sequence. If we want a general matrix,
then we need to have several query sequences which represent a good sample
of all the proteins. The evaluation function will then consist of a series of
searches, using the matrix to be evaluated, and the ‘scores’ for these searches

will need to be totalled to get an overall measure of the fitness of that matrix.

5.2 Final choice of evaluation function

After careful consideration it was decided to use the database search method
of evaluation. This was due to the fact that the analytical technique was
not properly defined for gapped alignments and this is what the matrix will
eventually be used for. Also if the theory was properly developed we would
not need to evolve a matrix, as we could then derive the matrix from the

frequencies given in our ‘ideal’ model.

“Of course things are a little more complicated ...for target
frequencies vary with evolutionary distance, and one therefore
needs a sequence of matrices adapted to these distances. This,
of course is what the PAM and BLOSUM series of matrices
provide.” [Altschul 98]

44



So in effect what we would be doing is deriving another form of Dayhoff’s
Matrix, in a slightly different way. However we are attempting to circumvent
the assumptions made by this method by using direct optimisation of the
matrix.

Another point to consider is that the database search is what the final
matrix is going to be used for. So by using this as our evaluation function, we
are really evaluating the performance of the scoring system under real world
conditions. If a theoretical model were used it would need to be derived and,
since new proteins are being discovered everyday, the model would soon be

out of date and so would any matrix derived from it.

5.2.1 How it works

The evaluation function works as follows. Firstly the matrix to be evaluated
is used to search a database for a small set of proteins. Each protein which
is used to query the database, will have a set of homologues that the search
is expected to find. The search will be done for each query sequence and the
results will be parsed to see how well they match to the expected output.
The search program returns a list of the matches which it finds. This list
is in order of significance. The highest match is not important because it
corresponds to the same protein as the query sequence. So the first match
will always be the same protein used for the search. We are more interested in
later matches which correspond to the next most similar protein (according
to the scoring matrix), and so on.

The search will be done using the sss_align program. This program
ranks the matches in order of significance, the most significant match being at
the top of the list. The program returns the top 200 matches from the search
(this value can be changed, but was kept at 200 for all our experiments).
The best result would be to have all known homologues appear immediately

after the highest match, but in practice they are often lower down in the list.

45



By counting the positions between the highest match and the lowest match,
we can score a matrix on its performance for that protein. This is then done
for all the proteins in the training set, and the results are summed. If there
are no matches then that protein is given a score of 400. If there is only one
match then this is the same as the query protein. So it is still a bad result,
but it is not given a score of 400. Instead a score of 200 + the position of this
highest match is given. This is because the sss_align program returns the
top 200 matches, so if there is only one match and it is in position 200, then
the score will be 400 (as if there were no matches). The scoring algorithm is

given in Algorithm 2 below.

Algorithm 2 Scoring algorithm for evaluation function
main score = (

for 7 = 0 to Numberoftestproteins do
component score = 0
parse results and mark any proteins p which match targets with a ‘1’
mark any that do not match with a ‘0’
start counting from highest match
count from highest match A to lowest match [
for j=htol do
component score = component score + 1 if p; =0
end for
if No matches at all then
component score = 400
else if one match then
component score = 200 + position of match
end if
main score = main score + component score

end for

46



Example

The scoring algorithm can be illustrated with a simple example. Suppose

the database search resulted in the output below.

1 515 5.50e-56 ELECTRON TRANSPORT 1ETP 1
2 102 3.33e-03 ELECTRON TRANSPORT iDVH O
3 95 1.75e-02 ELECTRON TRANSPORT(FLAVOCYTOCHROME) 1FCD 1
4 82 3.36e-01 ELECTRON TRANSPORT 1COR O
5 71 3.46e+00 NUCLEOTIDYLTRANSFERASE 1TAQ O
6 71 3.46e+00 NUCLEOTIDYLTRANSFERASE 1JXE 0
7 68 6.32e+00 NUCLEAR RECEPTOR 2LBD 1
8 66 9.36e+00 THIOLASE 1AFW O
9 65 1.14e+01 IMMUNOGLOBULIN 1YUH 0
10 65 1.14e+01 PHOSPHATE TRANSPORT 10IB 0

Here only the top ten results are shown, in a proper search there would be
200 of these. Our query protein was 1ETP, so we start counting from this
(highest) match. Suppose the homologues of 1ETP are 1FCD and 2LBD. We
now count all the zero’s from 1ETP down to the lowest match which is 2LBD.
Thus this protein would get a score of 4. Note the order of the homologues
is not important, only their position in the list. So in fact 2LBD and 1FCD
could have been the other way around and they still would have achieved the
same score. Furthermore the number of matches found does not affect the
score. For example one protein has two matches close together, and another
protein has 10 matches but with a space between the first and the second
match, the first protein will get a lower score. This was done to ensure no
bias between examples, because some proteins have one homologue whereas

others might have a lot more.

47



5.2.2 The sss_align program

The sss_align program [Sturrock 97] was developed to search databases for
proteins whose secondary structure had already been predicted. By using
this additional information the program could sometimes detect homologues
where previous programs could not. The program has a number of features,
but the main reason for using it was that it allows one to specify a scor-
ing matrix given as a file, and also implements the Smith and Waterman
algorithm efficiently. So, when using it as part of the evaluation function,
one need only specify the correct command line parameters and the program
runs and returns the results in an output file which can then be parsed by the
evaluation function. The program uses its own database which was created
for the program (see [Sturrock 97]) and this contains around 3,200 entries.
This database was used as it contains enough representative entries, and is

also small enough so that searches remain fairly fast.

5.2.3 Evaluation time

The complete evaluation process is illustrated in Figure 5.1. A database
search using sss_align takes approximately ten seconds. If our training set
of proteins was ten proteins then a run of 100 generations for a population
of ten matrices would take around 28 hours. This is why a selection scheme
was used to select subsets of proteins for evaluation, rather than evaluate the

whole training set in every generation (see Section 5.3).

5.3 Subset selection methods

A database search takes time and there has to be several proteins in our
training set in order to evolve a good general matrix. One way to reduce the

time evaluating each matrix is by using a technique called subset selection.

48



Matrix }

Evaluation
sss_align program Output
~algn prog - . - Function
—_— File
Sequences l
Final Score

Figure 5.1: The evaluation process

This technique allows one to have a large training set, but then only use a
subset of that training set when evaluating a solution vector. The subset is
changed every generation, so that over a run of evolution the entire training
set is used. There are various methods of picking the subset from the training
set.

In random subset selection the subset is picked from the training set en-
tirely at random. Normally the probability is scaled so that the subset size
is the same as the target size (i.e. the number of members we can actually
evaluate). However the algorithm was modified in this case so that the subset
was picked at random, but was always a fixed size.

Dynamic subset selection [Gathercole & Ross 94] is based upon the fact
that the algorithm must concentrate on the difficult cases and also on the
cases which haven’t been selected in a long time. In each generation, the
subset is selected by taking two passes through the full training set.

In the first pass of the entire training set, of size T, in a generation g, each
training case i, is given a weight, W. This is the sum of its current ‘difficulty’,
D, exponentiated to a certain power, d, and the number of generations since

it was last selected (or age), A, also exponentiated to a certain power, a:
Vi:1<i<T, Wilg) = Di(g)*+ Ai(g)®
The sum of all cases’ weights is also calculated during this first pass.

49



In the second pass of the entire training set, each case in turn has a
probability, P, of being selected to be in the subset. A case’s probability is
given by its weight divided by the sum of all the cases’ weights (found in the
first pass) and multiplied by the target subset size, S:

. . Wi(g) xS
Vi:1<i<T, Pfg)= 222
?:1 W;(g)

This scaled probability ensures that the average selected subset size is the

target subset size.

If a case, i, is selected to be in the subset, then its difficulty, D;, and age,
A;, are set to 0, otherwise its difficulty remains unchanged, and its age, 4; is
incremented. In this work the difficulty D was chosen to be the evaluation
score for a particular case. With our evaluation function the higher the score,

the more difficult that protein is to detect for the given matrix.

5.3.1 Subset size

In order to keep evaluations down to a minimum the subset size was fixed
at S=6. This number was chosen because it also represented the number of
different classes of protein which were in the training set (see Section 5.4).
The training set was subdivided into sets of each class, and DSS was used to
select one protein from each of these subsets. So in any one generation all six
proteins in the subset had a representative from each class. This was done
to ensure that the matrix evolved was as general as possible. If the subset
was derived from the entire training set without restrictions, then a subset
which contained proteins all from one class could result. This would bias the

evolution of the matrix to a particular class, which was not the aim.

50



5.4 Training data

The selection of the training data must reflect all the different known classes
of proteins. Also all classes of protein included in the training set should be
equally represented. This is particularly important for those protein families

that only have a few examples in them.

5.4.1 Which proteins should we include?

Proteins are classified under various umbrellas. For example there are protein
families of which there are several hundred, above this there are superfamilies
and folds, which still have hundreds of types. At the highest level there are
protein classes, there are around seven of these (there are more but these
represent the main classes of naturally occurring proteins). Our data set must
represent all of these classes equally, and include a few examples from each
class. Fortunately a database has been constructed which orders proteins by

their class, and can be used to pick out examples for our training set.

5.4.2 The SCOP database

The SCOP (Structural Classification of Proteins) database [Murzin et al. 95|,
was created to facilitate understanding of, and access to, information which is
available regarding protein structures. This database provides a detailed and
comprehensive description of the structural and evolutionary relationships of
the proteins of known structure. The method used to construct the protein
classification in SCOP is essentially the visual inspection and comparison of
structures. The unit of classification in SCOP is the protein domain. Small
proteins, and most of those of medium size have one domain, and so have
one entry in the database. A large protein may consist of several domains,
and thus may have several entries in the database referring to these different

domains.

o1



Each SCOP entry is identified with a 5-part number, which gives inform-
ation on its classification. SCOP entries with the same 5-part number have
homologous domains. These entries usually represent different domains from
the same large protein. Entries with the first 4 parts the same are also ho-
mologous, but are from different proteins. Two example SCOP entries are

shown below:

>dlhstb_ 1.4.3.7.1 Histone H5, globular domain [chicken]
SHPTYSEMIAAAIRAEKSRGGSSRQSIQKYIKSHYKVGHNADLQIKLSIRRLLAAGVLKQ
TKGVGASGSFRLAK

>dighc__ 1.4.3.7.2 Histone H1, globular domain [chicken]
MAGPSVTELITKAVSASKERKGLSLAALKKALAAGGYDVEKNNSRIKLGLKSLVSKGTLV
QTKGTGASGSFRLSK

These two domains are homologous, but we can see that they come from
different proteins, because they have a different fifth number. As shown in
the example above, SCOP contains proteins sequenced from many different
organisms.

The different folds' found among proteins in nature have been grouped
into classes for convenience. This provides an easy way to select examples
for our evaluation function. The seven main classes that are listed in SCOP

are as follows.

1. All alpha (for proteins whose structure is essentially formed by -

helices).
2. All beta (for those whose structure is essentially formed by [-sheets).

3. Alpha and beta (for proteins with a-helices and S-strands that are

largely interspersed).

1Proteins are classified using the term folds because the natural folding process is the

way in which proteins of different structure have come about.

52



4. Alpha plus beta (for those in which a-helices and §-strands are largely
segregated).

5. Multi-domain (for those with domains of different fold and for which

no homologues are known at present).

6. Membrane and cell surface proteins and peptides (this class was not

used in the experiments as it contained very few entries).

7. Small Proteins.

For the training set, four proteins were selected from each class, giving a
total of 24 proteins in the training set. The subset size was set at six (as this
was reasonable with the time taken for an evaluation), and the experiments
were then conducted using subset selection as described above. Class six was

not used as it only contained around 10 entries in the database.

5.5 Preparation of training data

The database used for the experiments was the sss_align database. The
searches produce an output such as that shown in Section 5.2.1. In order
to specify which proteins the evaluation function should look for, the unique
ID for each protein must be known. This is known as a PDB (Protein Data
Bank) identifier. Unfortunately the entries in SCOP do not have their PDB
identifiers listed. So the data picked from SCOP was prepared, by search-
ing for each sequence using the sss_align database, and finding the PDB
identifier. These were then put into a file, which was loaded into memory
once by the main program. This procedure was performed for all the sets of
data used for training and testing. It also served as a useful check to make
sure that the sequences picked from SCOP were actually in the sss_align

database.

53



5.6 Problems with training data

The SCOP database is organised by protein domains (see Section 5.4.2),
which means that there is often more than one entry in the database repres-
enting the different domains of the same protein. This presents a problem
when we use a different database to do the searching, such as the sss_align
database. This database has one entry for each whole protein, and so when
matching, it will only find one match for each domain which is in a seperate
protein. This means that only cases which have homologues from at least two
different whole proteins can be considered for the training data. Fortunately
there are many such examples in SCOP, which have different 5-part numbers,
but the same 4-part number (for an example see Section 5.4.2). All the data

used for the experiments can be found in Appendix B.

5.7 Summary

To summarise, database searches will be used to evaluate the scoring matrices.
Each matrix will be used to search a database for a number of proteins, and
will be scored on whether it can detect their homologues. To keep evaluations
to a minimum, a subset selection scheme will be used to select subsets of the
training set, rather than evaluate the matrix using the whole training set.
The training data was selected using a database organised by structure. The
training set includes examples from 6 major classes of protein. The subset
selection picks examples so that each class has an example represented within

the subset.

54



Chapter 6

Results

This chapter presents the results of the optimisation experiments. The ap-
proach used is described in Section 6.1, followed by a discussion on the choice
of experimental parameters in Section 6.2. The results are presented in Sec-
tion 6.3. Finally an analysis of the results is given in Section 6.4, this is

followed by a summary.

6.1 Experimental approach

The experiments whose results are described in this chapter were all carried
out in a similar fashion. First some preliminary experiments were done to
see what sort of parameters were worth considering. The reason for doing
this is due to the fact that each of the experiments take a substantial amount
of time (about 12 hours) and so it was not possible to do a thorough para-
metric search to determine the most optimum parameter settings. Instead
the recommended parameters for differential evolution were used and a few
test runs were done to make sure that the system worked.

After the parameters were chosen, a variety of runs were performed. The
population size and number of generations was varied. In order to keep the

number of evaluations down, there was a trade off between the number of

95



generations and population size, so a large population would only be run for
a short number of generations and vice versa.

At the end of each run the best matrix was saved, and then tested against
the entire training set of proteins. The results of these tests can be found
in Sections 6.3.1 and 6.3.5. To validate these results the matrices were then
tested against another set of unseen proteins, these results can be found in

Sections 6.3.3 and 6.3.7.

6.2 Choice of parameters

There are a few variable parameters which need to be set in order to use
differential evolution. The main parameter is F and determines what pro-
portion of the difference vector gets added onto the vector which is being
mutated. The recommended setting was F=0.8, and so this was tried in the
preliminary experiment. Another thing which needed to be decided upon was
whether or not to use an initial seed matrix in order to help the optimiser in
the right direction. If no seed matrix was used then DE might take a long
time to get to the current level of ‘good’ matrices. So the PAM250 matrix
was inserted into the initial population to help the optimiser get onto the
right track. It was also decided at this stage that the original DE algorithm
would be used, which does not use crossover. If this failed to get a result,

then crossover would be included.

6.2.1 Preliminary experiments

The preliminary experiments were test runs and were performed with a pop-
ulation of ten matrices over 100 generations. One experiment did not use a
seed matrix and the other did. The experiment which used a seed matrix
performed better than the one without, see Figure 6.1. From the numbers

on these two graphs it is clear that a seed matrix makes a big difference.

96



Without it the mean cost at the end of the run is around 1640, and with the

seed matrix the mean cost converges to a value of around 200.

wiry witha Graph showing converpencs without 8 seed mairix

250

) 200 200 1000 1200 o 200 800 000 1000 1200
Numbar of evahsaons Nurnber of evaiuations

Figure 6.1: Graphs showing convergence with and without a seed matrix

For the remaining experiments, it was decided to keep the parameter
settings as they were, and to use a seed matrix. Thus the parameter settings

used were:

e The value for F was 0.8.

e The settings for the dynamic subset selection exponents were d=1.0
and a=3.5 (as recommended in [Gathercole & Ross 94]). With these
exponents, the most difficult cases and cases around 15 generations old

would have roughly equivalent weights.
e For the seed matrix, the PAM250 matrix was used.

e Default gap penalties were used (the sss_align program chooses ap-

propriate gap penalties for the scoring matrix being used).

Furthermore the starting values for elements in the randomly generated
matrices were restricted to be in the range [-30,10]. This was to ensure that
the original population did not start with values which deviated too much

from those found in most matrices (e.g the PAM250 matrix). The population

87



Experiment | Random seed | Population size | Number of generations
runl 3 10 100
run2 5 20 100
run3 7 10 100
run4d 10 50 10
rund 2 20 200
run6 13 20 100

Table 6.1: Parameters for the first set of experiments

Experiment | SCOP class | Random seed | Population size | Number of generations
runl 1 9 10 100
run2 1 13 20 100
run3 1 52 30 100
rund 3 3 20 100
rund 3 15 10 100

Table 6.2: Parameters for the second set of experiments

size and number of generations were varied with each experiment and can
be found in Tables 6.1 and 6.2 along with the random number seed used for

each experiment.

6.3 Results

Two sets of experiments were conducted.
the aim was to evolve a general matrix capable of finding homologues to
all proteins. When referring to matrices which were not evolved, the term
derived matrices is used, and refers to the PAM and BLOSUM matrices used

in the tests. In the second set of experiments the aim was to evolve a matrix

58

In the first set of experiments

==



which would be specific for a particular class of protein. The parameters for

all experiments were kept the same (see Section 6.2).

6.3.1 Results for first set of experiments

The results for the first set of runs are shown in Table 6.3. These runs were
seeded with the PAM250 matrix, and used the parameters given in Section
6.2 above. These results show the performance of the matrices with the
training set of 24 proteins. The mean score is shown for the entire training
set. This was derived by totalling the individual component scores for each
protein and dividing by 24. Furthermore a breakdown by SCOP class is also
given. This was computed by totalling the scores for the proteins in each

class and dividing by the number of proteins in that class.

Matrix Mean score Mean score for each SCOP Class

Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 7
PAM250 49.58 50 41.5 21.25 57.75 82.5 44.5
PAM120 42.5 83.5 75.25 1 53 4.75 37.5
BLOSUMSG60 | 28.58 53.5 38 1.5 54.25 9 15.5
runl 39.08 54.5 61.5 0.25 56 4 58.25
run2 67.79 86 91.5 41.5 87.25 0.25 100.25
run4 74.92 51.25 82.75 51.75 97 93 73.75
rund 28.13 25 39 1 52 3.5 23.25
run6 176.29 157.75 199 100.5 129.5 135.5 335.5

Table 6.3: Results for the first set of experiments using the training data

6.3.2 Discussion

The results for run3 are not shown as this run resulted in the best matrix
being the PAM250 matrix. It seems strange that the matrix generated from

a run is not always the best matrix. This is due to the subset selection.

59



A matrix may be really good for a particular subset, and for this subset it
may be better than the PAM250 matrix, thus replacing that matrix in the
population. Only when the matrix is tested against the entire training set
does this ‘sampling error’ become clear.

However there are some interesting results in runs 1 and 5. In particular
rund scores a better overall score than the PAM250 matrix, and also scores
better mean scores for each of the SCOP classes. From the results it is clear
that some matrices are good at certain classes and not so good at others. For
example run2 has a worse overall score than the PAM250 matrix, but scores
considerably better for SCOP class 5 than the PAM250 matrix. The best
candidate for an improved general matrix is that generated by runj, since it
dominates the PAM120 and PAM250 matrices under each SCOP class, and
is better than the BLOSUMG60 matrix in all classes except classes 2 and 7.

6.3.3 Validation tests for first set of experiments

In order to test the best matrices generated in the first set of experiments a
test set of proteins was produced. For the general type of matrix, this was
exactly the same as the training set, a set of 24 proteins with 4 examples from
each class. The tests were performed using the same evaluation function as
the previous experiments. The results for these tests can be seen in Table
6.4. The scores shown in these tables were computed in the same way as

those in Section 6.3.1.

6.3.4 Discussion of test results

The test results show that only the matrix generated from runb is truly
competitive with the PAM and BLOSUM matrices. This matrix performed
better than the PAM120 and PAM250 matrices, but was outperformed by the

BLOSUMG60 matrix. The runb matrix does however achieve better average

60



Matrix Mean score Mean score for each SCOP Class
Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 7

PAM250 82.63 18.5 96 92.5 199 74 15.75
PAM120 79.88 49.75 115.5 94.5 151 24.5 44
BLOSUMSG60 | 73.21 50 90 57.75 120.5 95.5 25.5
runl 90.58 99.5 118.25 | 100.5 152 54.25 19
run2 97.63 115 120.5 118.5 156 67 8.75
rund 84.58 99.75 99.5 68 152.5 75.75 12
rund 76.25 53.25 90 71 160 60.5 22.75
run6 169.29 189.25 | 149.25 | 196.75 199 183 98.5

Table 6.4: Test results for the general set of matrices.

scores than the BLOSUMG60 matrix for SCOP classes 5 and 7.

6.3.5 Results for second set of experiments

In the second set of experiments, matrices were evolved for specific classes
of protein. This was done to investigate whether a matrix trained for a
particular class of protein could outperform the general type of matrix (when

used to detect proteins from that class).

The results for generating matrices specific to SCOP classes 1 and 3 are
shown in Tables 6.5 and 6.6. The parameters were the same as those used in
the first set of experiments, except that the training set was reduced to 18
proteins all from a particular SCOP class. The component scores for each
protein are given, as well as the overall score which was computed by adding
all the component scores together. The convergence graph for run2 is shown

in Figure 6.2.

61



Convergenca graph for 100 generations with NP=20
1200 T T
1000
800
B
g 800
c
3
=
400
200
‘o 500 1000 1500 2000 2500
Number of evaluations

Figure 6.2: Graph showing convergence for run2 (SCOP class 1)

6.3.6 Discussion

For matrices derived to detect proteins from SCOP class 1, the results for
runl and run2 are better than the PAM250, PAM120 and BLOSUMG60
matrices. The matrix generated in run2 beats the three general types of
matrix in most components. Especially component 11, where runl and run2
do much better than the general matrices.

The results for matrices evolved specifically for SCOP class 3 are not as
good as those for class 1. The matrix generated by rund is the best candidate,
and it is not as good as the BLOSUMG60 matrix. However, it is competitive
with the PAM120 and PAM250 matrices.

6.3.7 Validation tests for second set of experiments

For the matrices evolved for a specific task, the test set was a set of 12
different proteins picked from the same class. The test set was reduced to

12 because of a shortage of suitable examples in the SCOP database. The

62



Matrix PAM250 | PAM120 | BLOSUMS60 | runl | run2 | rund
Overall Score 563 657 656 483 | 370 | 1423
Component | 1 199 96 199 199 | 199 | 199
Score 2 1 135 14 2 0 168
3 16 9 7 18 27 4
4 74 199 199 199 72 199
5
6
7 0
8 21 199
9 75 21 62 38 48 46
10 21 26 10 4 23 199
11 176 170 161 0 0 1
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 199
15 0 0 0 0 0 0
16 1 1 3 2 1 199
17 0 0 0 0 0 0
18 0 0 0 0 0 0

Table 6.5: Results for SCOP Class 1 experiments on training data

tests were performed using the same evaluation function as the previous
experiments. The results for these tests can be seen in Tables 6.7 and 6.8.

The scores shown in these tables were computed in the same way as those in

Section 6.3.5.

6.3.8 Discussion of test results

For the class 1 matrix the test results show that the matrices from runl
and run2 are better than the PAM and BLOSUM matrices. In particular

the score for component 11 is much better when using the evolved matrices.

63




Matrix PAM250 | PAM120 | BLOSUMS60 | rund | run5
Overall Score 1170 1183 605 1167 | 1455
Component | 1 2 400 5 2 400

Score 2 1 2 1 1 1

3 0 0 199
4 82 0 34

5 171 179 32 53 10

6 0 0 0 11 0

7 0 0 0 62 0

8 199 199 199 34 21

9 0 0 0 113 2

10 2 0 0 0 3
11 84 160 48 118 199

12 199 14 191 199 181

13 95 9 62 0 0

14 57 16 7 3 29
15 1 1 32 400
16 199 199 59 199 | 199

17 53 0 107 10

18 25 4 0 0

Table 6.6: Results for SCOP Class 3 experiments on training data

With this test data the runl matrix outperformed the run2 matrix, but if the

results over the training data (see Table 6.5) are added to these test results,

then run2 is better overall.

The class 3 matrices failed to beat the PAM and BLOSUM matrices,
confirming the result found in the training tests (Table 6.6). However, with
this data set, the matrix for run5 outperformed the matrix for rund. This

shows that the results are very much dependent on the data set used.

64




Matrix PAM250 | PAM120 | BLOSUMS60 | runl | run2 | run3
Overall Score 552 601 564 519 | 525 | 774
Component | 1 0 54 0 22 0 199

Score 2 0 0 0 0 0 0

3 0 0 0 0 22

4 1 4 1 4 44 12

5 0 0 0 0 0 16
6 199 199 199 199 | 199 | 199

7 22 0 73 83 0 96

8 0 0 0 0 0 2

9 6 7 6 6 6 2
10 175 144 199 199 | 199 | 199

11 149 109 86 6 12 27

12 0 84 0 0 65 0

Table 6.7: Results for SCOP Class 1 experiments on the test data

6.4 Analysis of results

For the general matrix most runs were not as good as the PAM and BLOSUM
matrices. The matrix generated by runb is the only candidate which beats
all the ‘derived’ matrices. This result was as expected, most matrices evolved
for a general protein search task would probably fall within the same surface

as the PAM and BLOSUM matrices.

“One problem appears to be that these scoring systems have a
very broad plateau, so that once one has gotten a pretty good
system it is difficult to improve it a great deal, and what one
ends up with may depend on the idiosyncrasies of one’s test data.”

[Altschul 98]

65



Matrix PAM250 { PAM120 | BLOSUMS60 | run4 | runb
Overall Score 601 612 656 1419 | 690
Component | 1 0 54 85 140 0
Score 2 186 59 133 199 | 188
3 104 80 190 199 | 18
4 6 9 34 131 8
5 126 199 183 34 | 199
6 50 186 10 82 0
7 2 2 2 0 4
8 4 2 17 199 84
9 0 0 0 199 0
10 122 1 1 37 68
11 0 0 0 199 0
12 1 20 1 0 121

Table 6.8: Results for SCOP Class 3 experiments on the test data

The results from the validation tests show that the run5 matrix is not
unbeatable. These results show that the BLOSUM matrix is the best per-
former overall, however the runb matrix is still competitive with the PAM120
and PAM250 matrices. A more extensive study (such as that shown in
[McCaldon & Argos 88] or [Henikoff & Henikoff 93]) would need to be per-
formed to find the exact properties of the matrix, and whether it is good at

finding proteins from (say) a particular evolutionary distance.

The matrices generated in runl and run2 to detect homologues of class 1
proteins outperformed the PAM and BLOSUM matrices on both the training
and test data. This shows that it is possible to use an optimisation approach
in generating good matrices for specific tasks. This matrix would also need

to be tested more extensively, using a bigger test set of examples.

66



The matrices generated to detect class 3 examples did not perform as well
as those for generated for class 1. None of these matrices outperformed the
BLOSUM matrix. The run4 matrix however, did well against the training
data set. A biological reason for the poor results for this class may be because
of the complexity of proteins found within class 3. Class 3 proteins consist of
alpha helices and beta sheets which are interspersed, where as class 1 proteins
only consist of alpha helices. Thus this result would seem to confirm that
some protein structures are much more harder to reliably score (and thus

predict) than others.

6.4.1 Significance of results

One thing that can be said from the above results is that the optimisation of
scoring matrices is possible. From the graphs shown in Figures 6.1 and 6.2,
one can see that the matrix is being steadily improved. This at least shows
that the optimisation is working. They also suggest that at least a little more

improvement might be possible with longer runs and larger populations.

The results show that it is possible to evolve a matrix which is as good as
some of the derived matrices, but not better (so far), for detecting all classes
of protein. It is possible to evolve a matrix however which is specific to a
particular class of protein, and which does outperform the derived matrices
for that particular class. The matrix generated for detecting proteins from
SCOP class 1 shows this to be true. The main significance of this result
is that this matrix can detect some homologues which the general matrix
cannot. For example in Table 6.5, the score for component 11 is much lower
when using the evolved matrices. Also in the validation tests (Table 6.7),

again component 11 gets a better score using the evolved matrices.

67



6.5 Summary

To summarise, the matrices evolved for general detection of protein homo-
logues were competitive with some of the derived matrices, but not all. The
results show that it is possible to evolve matrices which lie in the same ball-
park as the PAM and BLOSUM matrices, but to improve upon these matrices
is difficult. When evolving matrices which look for specific classes of protein
the matrices evolved to look for class 1 proteins were more successful than
those evolved to look for class 3 proteins, this highlights the fact that some
types of protein are easier to detect than others. The matrix evolved to look
for class 1 proteins outperformed the PAM and BLOSUM matrices, and this
seems to indicate that the optimisation of scoring matrices is possible for spe-
cific types of protein. The best evolved matrices can be found in Appendix
A. All of the results found however were only tested on a (relatively) small
set of examples, and a more extensive testing study should be performed to

corroborate these findings.

68



Chapter 7

Conclusion

This chapter concludes the research presented in this work. Section 7.1 re-
states the main aims of the project and what was achieved. This is followed by
Section 7.2 which describes the most significant results. Section 7.3 discusses
how one could follow up on the work presented here, and this is followed by

some concluding remarks.

7.1 Aims and achievements

7.1.1 Objectives

The aim of this project was to investigate whether or not amino acid scoring
matrices could be improved by an optimisation approach. The main task
was to see if a scoring matrix could be evolved which would find homologous
proteins that could not be detected by current state of the art matrices. It
was decided to use an evolutionary approach to this task, and the differential
evolution algorithm was chosen to perform the optimisation experiments.
The function used to evaluate the weight matrices during optimisation was

based on a direct database search using suitable training data.

69



7.1.2 Achievements

The results show that the optimisation approach used, does work, in that
scoring matrices are steadily improved over a number of generations. This
indicates that the evolutionary algorithm used is useful for this kind of prob-
lem and could be used for further investigations in this domain.

The experiments achieved mixed results. The best matrix evolved to
detect homologues from all types of protein was as good as some of the
derived matrices, but not better in all regards. In particular the BLOSUM
matrix outperformed the best evolved matrix on the test data. However
there were certain classes where the evolved matrix was better than the
BLOSUM matrix on this set of data, so the BLOSUM matrix was not totally
dominating.

The best matrix generated to detect proteins from SCOP class 1 was bet-
ter at detecting examples from this class than the derived general matrices.
However the matrix evolved specifically for class 3 did not perform as well.
This matrix was beaten by the BLOSUMG60 matrix on the first set of test

data, and beaten by all the derived matrices on the second set of test data.

7.2 Significant results

The main significance of the results is that an optimisation approach for this
problem is possible and credible results can be achieved. In particular it is
encouraging that although the best general matrix did not totally outper-
form all the derived matrices it was still competitive with some of the best
matrices in current use. This result also concurs with many people’s suspi-
cions that a good general matrix is very difficult to find. The search for an
overall general matrix may be impractical since to derive such a matrix using
statistical techniques requires a large set of data, and representative proteins

from all known protein families. Even then, this sort of matrix may not

70



detect homologues, since some new proteins are from entirely new families
which have never before been seen. However the question on whether or not

there is a better general matrix remains unanswered.

The results show that it may be easier to evolve or derive matrices which
are specific to a certain class of protein. This is not only easier in that
there is less data involved, but also gives the optimisation a single goal to
achieve. With a general matrix, the optimisation is dealing with multiple
objectives, and if one objective is improved upon, then another may suffer as
a consequence. This can be seen from the results shown in Table 6.3. Some
matrices do better for some SCOP classes than for others, if one wished to
have an unbiased matrix then the mean scores for each class would be equal.
Of course this all depends on the training data used, but in the experiments
conducted, the training data was chosen to be as unbiased as possible. Thus
in every generation, the classes of protein selected for evaluation were equally

represented.

The best matrix evolved for SCOP class 1 outperformed all the derived
matrices, however the matrix evolved for class 3 failed to beat the derived
matrices. This is probably due to the fact that class 1 proteins all consist of
the same type of secondary structure (namely alpha helices), where as class
3 proteins consist of two types of secondary structure (alpha helices and
beta sheets). Given hindsight it is easy to see that proteins which consist
of only one type of secondary structure, will benefit from a table which
is specifically dedicated to that secondary structure. The general matrices
need to cope with all types of secondary structure and so represent some sort
of average between these three types. Similarly the class 3 matrix had to
average between these types and so was similar to a general type of matrix.
Whether there better matrices for all classes remains unanswered, but more
investigation into this area would clearly prove useful because the BLOSUM

matrix (or one similar in characteristics) was not found, which we know is at

71



least better than some of the special class matrices that were found.

7.3 Further work

There are several approaches one could take to build upon the results presen-
ted here. First of all there are several improvements which could be made to

the evolutionary process.

e Change the generation of the initial population so that matrices are
generated by making random variations in a seed matrix. This would
ensure that all starting matrices would have a similar composition to
the seed matrix, this variation could be used when one has a good

matrix but it needs to be fine tuned.

e Crossover was not used in any of the experiments, this could be tried

to see if it achieves any improvements.

e Increase the size of the training set, and run for more generations per-

haps with bigger population sizes.

This last point can be achieved fairly easily with the provision of more
time and computing power. The DE algorithm used is fairly easy to paral-
lelise (see [Storn & Price 95]). Thus it would be advantageous to port the
algorithm to a fast parallel machine and run experiments using larger popu-
lation sizes and more generations.

An obvious extension to this work would be to confirm the results found
by doing an extensive test on the best of the evolved matrices. This could
take the form of a statistical test where a large set of example proteins would
be aligned using the matrix to be tested. Such large scale tests are described
in [Henikoff & Henikoff 93] and [McCaldon & Argos 88].

The training data and experimental approach could also be changed. It

was found that it is easier to evolve matrices for particular classes of protein

72



which contain one type of secondary structure. Thus it would be useful to
try and evolve matrices for each of the three types of secondary structure.
The data to train these proteins could easily be found in a database such
as SCOP which is organised by structure. Once these tables are generated
they could be used as a set. Using a program such as sss_align which
gives data on secondary structure information, one could effectively swap
scoring matrices mid-search to get the best alignment for a given protein.
This would eliminate the problem of current scoring matrices which are an

effective average between the three types of secondary structure.

One problem with this approach is that one does not know the secondary
structure of an unknown protein. However there do exist reliable algorithms
(such as the PHD algorithm [Rost & Sander 93]) which can predict the sec-
ondary structure of a protein with around 70% accuracy. Moreover the PHD
algorithm also gives an estimate as to how good its prediction is for each
secondary structure element in the protein. One could use these estimates
as a weight to determine when to use a general matrix for a section of the
protein or to use the special secondary structure matrix corresponding to

that element.

One could also use the matrices evolved in this work as a building block,
in order to evolve more refined matrices. The training data could be chosen
to reflect very hard cases, where sequence identity is very low but the proteins
are still structurally similar. Given a big set of such training data, the initial
population could be seeded with one of the evolved matrices as described
above. This would enable us to determine how successfully a matrix could

be fine tuned for a particular task.

73



7.4 Concluding remarks

An unprecedented wealth of data is being generated by genome sequencing
projects and other experimental efforts to determine the structure and func-
tion of biological molecules. In particular biotechnology, pharmacology, and
medicine will be affected by the new results and increased understanding of
life at the molecular level. This work explains one of the techniques which is
important in this endeavour, namely the detection of protein homologues by
searching databases. The results presented here, show that it is possible to
use an optimisation approach, in improving the amino acid scoring matrices
used in protein database searches. We have also found that it may be more
effective to use a set of matrices which are suited to particular types of pro-
tein, rather than a single matrix suitable for all proteins. A possible avenue
for extension was described and ways on how the optimisation process might

be improved were also discussed.

74



Bibliography

[Altschul & Gish 96]

[Altschul 91]

[Altschul 98]

[Altschul et al. 90]

[Altschul et al. 94]

[Béck et al. 91]

S.F. Altschul and W. Gish. Local alignment
statistics. Methods in Enzymology, 266:460-480,
1996.

S.F. Altschul. Amino acid substitution scoring
matrices from an information theoretic perspect-
ive. Journal of Molecular Biology, 219:555-565,
1991.

S.F. Altschul, 1998. Personal Communication.

S.F. Altschul, W. Gish, M. Miller, E.W. Myers,
and D.J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215:403-410,
1990.

S.F. Altschul, M.S. Boguski, W. Gish, and J.C.
Wootton. Issues in searching molecular sequence

databases. Nature Genetics, 6:119-129, 1994.

T. Back, F. Hoffmeister, and H. Schwefel. Exten-
ded selection mechanisms in genetic algorithms.
In Richard K. Belew and Lashon B. Booker, edit-

ors, Proceedings of the Fourth International Con-

75



[Baeck et al. 97]

[Branden & Tooze 91]

[CAS96]

[Dayhoff et al. 72]

[Dayhoff et al. 78]

[Feng et al. 84]

[Fitch 66]

ference on Genetic Algorithms, San Mateo, CA,

1991. Morgan Kaufmann Publishers.

T. Baeck, D. B. Fogel, and Z. Michalewicz. Hand-
book of Evolutionary Computation. Oxford Uni-
versity Press, 1997.

C. Branden and J. Tooze. Introduction to Protein

Structure. Garland Publishing Inc., 1991.

Critical assessment of techniques for protein
structure prediction, 1996. Available on the web

at http://PredictionCenter.11lnl.gov/.

M.O. Dayhoff, R.V. Eck, and C.M. Park. Atlas of
Protein Sequence and Structure, volume 5, pages
89-99. National Biomedical Research Founda-
tion, Washington, DC., 1972.

M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt.
Atlas of Protein Sequence and Structure, volume
5, suppl. 3, pages 345-352. National Biomedical
Research Foundation, Washington, DC., 1978.

D.F. Feng, M.S. Johnson, and R.F. Doolittle.
Aligning amino acid sequences: comparison of
commonly used methods. Journal of Molecular

Evolution, 21:112-125, 1984.

W.M. Fitch. An improved method for testing
for evolutionary homology. Journal of Molecular
Biology, 16:9-16, 1966.

76



[Gathercole & Ross 94]

[Gonnet et al. 92]

[Henikoff & Henikoff 92)

[Henikoff & Henikoff 93]

[Holland 75]

[Ingber & Rosen 92|

[Jones et al. 92}

C. Gathercole and P. Ross. Dynamic training
subset selection for supervised learning in genetic
programming. Technical report, Dept. of Artifi-
cial Intelligence, University of Edinburgh, Febru-
ary 1994.

G.H. Gonnet, M.A. Cohen, and S.A. Benner. Ex-
haustive matching of the entire protein sequence

database. Science, 256:1443-1445, 1992.

S. Henikoff and J.D. Henikoff. Amino acid sub-
stitution matrices from protein blocks. Proceed-
ings of the National Academy of Science, USA,
89:10915-10919, 1992.

S. Henikoff and J.D. Henikoff. Performance eval-
uation of amino acid substitution matrices. Pro-

teins, 17:49-61, 1993.

J.H. Holland. Adaptation in Natural and Artifi-
cial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

L. Ingber and B. Rosen. Genetic algorithms
and very fast simulated annealing - a compar-
ison.  Mathematical and Computer Modeling,
16(11):87-100, Nov 1992.

D.T. Jones, W.R. Taylor, and J.M. Thornton.
The rapid generation of mutation data matrices

from protein sequences. Computer Applications

in Bioscience, 8:275-282, 1992.

7



[Karlin & Altschul 90]

[Karlin & Altschul 93]

[Kolodner 93]

[Krogh et al. 94]

[McCaldon & Argos 88]

[McLachlan 72]

[Michalewicz 96]

S. Karlin and S.F. Altschul. Methods for assess-
ing the statistical significance of molecular se-
quence features by using general scoring schemes.

Proceedings of the National Academy of Science,
USA, 87:2264-2268, 1990.

S. Karlin and S.F. Altschul. Applications and
statistics for multiple high scoring segments in

molecular sequences. Proceedings of the National
Academy of Science, USA, 90:5873-5877, 1993.

J. L. Kolodner. Case-based reasoning. Morgan

Kaufmann Publishers, 1993.

A. Krogh, M. Brown, L.S. Mian, K. Sjoelander,
and D. Haussler. Hidden markov models in com-
putational biology: Applications to protein mod-
elling. Journal of Molecular Biology, 235:1501—
1531, 1994.

P. McCaldon and P. Argos. Oligopeptide bi-
ases in protein sequences and their use in pre-
dicting protein coding regions in nucleotide se-

quences. Proteins: Structure, Function and Ge-

netics, 4:99-122, 1988.

A.D. McLachlan. Repeating sequences and gene
duplication in proteins. Journal of Molecular
Biology, 64:417-437, 1972.

Z. Michalewicz. Genetic Algorithms + Data
Structures = FEvolution Programs.  Springer,

1996.

78



[Murzin et al. 95]

[Needleman & Wunsch 70]

[Pearson & Miller 92]

[Reeves 93]

[Rost & Sander 93]

[Sankoff & Kruskal 83]

[Sellers 80]

A.G. Murzin, S.E. Brenner, T. Hubbard, and
C. Chothia. Scop: a structure classification
of proteins database for the investigation of se-
quences and structures. Journal of Molecular

Biology, 247:536-540, 1995.

S.B. Needleman and C.D. Wunsch. A general
method applicable to the search for similarities in

the amino acid sequence of two proteins. Journal
of Molecular Biology, 48:443-453, 1970.

W.R. Pearson and W. Miller. Dynamic program-
ming algorithms for biological sequence compar-
ison. Methods in Enzymology, 210:575-601, 1992.

C.R. Reeves. Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific

Publications, 1993.

B. Rost and C. Sander. Improved prediction of
protein secondary structure by use of sequence
profiles and neural networks. Proceedings of the
National Academy of Science, USA, 90:7558-
7562, 1993.

D. Sankoff and J.B. Kruskal. Time warps, String
edits and Macromolecules: The Theory and Prac-

tice of Sequence Comparison. Addison-Wesley,

1983.

P.H. Sellers. The theory and computation of evol-
utionary distances pattern recognition. Journal
of Algorithms, 1:359-373, 1980.

79



[Smith & Waterman 81]

[Storn & Price 95]

[Storn & Price 96]

[Stroustrup 91]

[Sturrock 97]

[Surry & Radcliffe 97]

[Tuson 98]

T.F. Smith and M. Waterman. Identification of
common molecular subsequences. Journal of Mo-

lecular Biology, 147:195-197, 1981.

R. Storn and K. Price. Differential evolution -
a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Tr-95-012,
International Computer Science Institute, Berke-

ley, CA, March 1995.

R. Storn and K. Price. Minimizing the real
functions of the icec’96 contest by differential
evolution. In Proceedings of the IEEE Confer-
ence on Fvolutionary computation, pages 842-

844, Nagoya, Japan, 1996.

B. Stroustrup. The C++ Programming Lan-
guage: Second Edition. Addison-Wesley Publish-
ing Co., Reading, Mass., 1991.

S.S. Sturrock. Improved Tools for Protein Ter-
tiary Structure Prediction. Unpublished PhD
thesis, University of Edinburgh, 1997.

Patrick Surry and N. Radcliffe. A formalism for
real-parameter evolutionary algorithms and dir-

ected recombination. Morgan Kaufmann, San

Mateo, CA, 1997.

A. Tuson. Optimisation with hillclimbing on ster-
oids: An overview of neighbourhood search tech-

niques. 1998.

80



[Voet & Voet 95]

[Vogt et al. 95]

[Waterman & Vingron 94]

D. Voet and J.G. Voet. Biochemistry (2nd Edi-
tion). John Wiley and Sons, 1995.

G. Vogt, T. Etzold, and P. Argos. An assess-
ment of amino acid exchange matrices in align-
ing protein sequences: The twilight zone revis-
ited. Journal of Molecular Biology, 249:816-831,
1995.

M.S. Waterman and M. Vingron. Rapid and ac-
curate estimates of statistical significance for se-
quence data base searches. Proceedings of the Na-
tional Academy of Science, USA, 91:4625-4628,
1994.

81



e

Ea El

r

—

82



Appendix A
The best evolved matrices

On the following pages the two best evolved matrices are shown. Table A.1
shows the best general matrix evolved. Table A.2 shows the best matrix
evolved to look for proteins from a particular class. Note that the scores for

matches of two amino acids (e.g. A A) are positive.

83



15

-5
-2

-6
-2

4

-1
-1
6

-9
-8
-3

4
-7
7

-1

-1
-1

4
-5
4

-3
-3
-2
-3
-3

-1
-6
-6

-2
-9
-4
-6
-1

-5
-2

-2

0

0
0

-3
-7

-4
-4
-1
-1
-2
-1

-8
0
I

-4

-3
-4

-1
-1

-1
-3
-3
-2
-5
-3

-5
-2
-1
-3
-4
-2
-2
-3
-6
-2
-1
-4
-8
-3

-3
0
-4
-1
-3
-2
-3
-6
-5
-2
-5
-4
-1
4

-6

0
4
-2
2
-5
0
-2

2
-1
2
-1
-5
-5

-6
-2
2
-3
1
-6
-2
-1
-4
0
-2
-2
1
-5
-6
-6

11
-6
-6
-7
-6
-2
-3
-4
-8
-3
-9
-3
-3
-4

-3
-3
-9
-1

-3
-3
-2
-6
-1
-3
-3
-3
-3
0

0
-3
-3
-1

0
-9
-4

C
D
E
F

H

K
L

Q
R

W
Y

K L. MNP QR S T V W Y

A C D E F G H

Table A.1: The best general scoring matrix (evolved in run5)

84



16
0

-6
-3

-6
-4

2
-4

-3
3
-6

-1
-5
-4

-2
-5
-5

-2
-5
-1

-1
-3
2

-3

3
-6
4

-3
-3
-3
-4
-2

-9
-2

0
-2

-5
-6

-2

-3
-3
-3
-2
-2

-5
0
I

-3

-3

1

3
1

-4
-5
1

-1
-3
-3
-3

-1
1
-4

-2
-6
-5

-5
-2

0
-4

-3
-4
-5
-4

-2

0

-5
-1

-3
0
-2
-3

-2
-1

-3
-7
-5

-4
0

-2
-1
-3
-3

-1

-1
0

-2
-8
-3

11

-3
-5

-3
-9
-9
-5

-4
-1

-2
-8
-1

-3

-3

-1
1
1
-1

-2

-1
-7
-2

C

F

R

w
Y

K L M NP QR S TV WY

A C D E F G H

Table A.2: The best scoring matrix for SCOP class 1

85



r

|

E=3

[ 1 I ] 1

B

86



Appendix B

Training and test data

B.1 Training data for general matrix
class 1

>dletpal 1.3.1.3.1 (1-92) Cytochrome c4 [Pseudomonas
stutzeri]

>dilhsta_ 1.4.3.7.1 Histone H5, globular domain [chicken
(Gallus gallus)]

>diphna_ 1.1.1.2.1 Phycocyanin [red alga (Cyanidium
caldarium]

>dihdj__ 1.2.2.1.1 HSP40 [Human (Homo sapiens)]
class 2

>dlvcaa2 2.1.1.4.1 (1-90) N-terminal domain of vascular
cell adhesion molecule-1 (VCAM-1) [human (Homo sapiens)]
>dincia_ 2.1.5.1.1 N-cadherin (uvomorulin), domain 1

[Mouse (Mus musculus)]

87



>d2mem__ 2.1.6.1.1 Macromycin [Streptomyces
macromomyceticus]
>dinbca_ 2.2.2.2.1 Cellusomal scaffolding protein A4,

scafoldin [Clostridium thermocellum]

class 3

>dipkm_2 3.1.9.1.1 (1-104,207-384) Pyruvate kinase,
N-terminal domain [cat muscle (Felis domestica)]

>d2myr__ 3.1.1.4.1 Myrosinase [white mustard (Sinapis alba)]
>dlakz__ 3.11.1.1.1 Uracil-DNA glycosylase [Human

(Homo sapiens)]

>dipii_1 3.1.8.1.1 (1-254) N-(5’phosphoribosyl)antranilate

(PRA) isomerase [Escherichia coli]

class 4

>d2reb_2 4.27.1.1.1 (244-303) RecA protein, C-terminal
domain [Escherichia coli]

>disso__ 4.9.1.1.1 DNA-binding protein [Sulfolobus
solfataricus]

>dlesfa2 4.12.5.1.1 (117-229) Staphylococcal enterotoxin A,
SEA [Staphylococcus aureus]

>divjw__ 4.33.1.4.1 Ferredoxin [Thermatoga maritima]

class 5

>d2hcka3 5.1.1.2.1 (167-437) Haemopoetic cell kinase Hck

(human (Homo sapiens)]

88



>d7cata_ 5.6.1.1.1 Catalase [beef (Bos taurus)]

>dibuca2 5.7.1.1.1 (1-232) Butyryl-CoA dehydrogenase
[Megasphaera elsdeniil

>dilhle.1 5.2.1.1.1 (a,b) Elastase inhibitor [horse (Equus
caballus)]

class 7

>dlcnr__ 7.10.1.1.1 Crambin [abyssinian cabbage (Crambe
abyssinica)]

>d4htci_ 7.18.1.1.3 Hirudin [leech (Hirudo medicinalis)]
>dimcti_ 7.3.2.1.1 Trypsin inhibitor [bitter gourd
(Momordica charantia, linn. cucurbitaceae) seed]

>d1danl3 7.24.1.1.1 (1-36) Coagulation factor VIIa [human

(Homo sapiens)]

B.2 Test data for general matrix

class 1

>dihcra_ 1.4.1.2.1 HIN recombinase (DNA-binding domain)
[synthetic]

>d1flia_ 1.4.3.9.1 Fli-1 [Human (Homo sapiens)]

>dlhks__ 1.4.3.10.1 Heat-shock transcription factor
[Drosophila melanogaster]

>dlebdc_ 1.9.1.1.1 E3-binding domain of dihydrolipoamide

acetyltransferase [Bacillus stearothermophilus]

class 2

89



>ditupa_ 2.2.3.1.1 p53 tumor supressor, DNA-binding domain
[Human (Homo sapiens)]

>dlhoe__ 2.4.1.1.1 HOE-467A [Streptomyces tendae 4158]
>dicyx__ 2.5.1.2.1 Quinol oxidase (CYOA) [Escherichia coli]
>d2bpal_ 2.8.1.1.1 Bacteriophage capsid proteins
[bacteriophage phiX174]

class 3

>dihvq__ 3.1.1.5.1 Hevamine A (chitinase/lysozyme) [Para
rubber tree Hevea brasiliensis]

>dimucal 3.1.6.2.1 (119-360) Muconate-lactonizing enzyme
[Pseudomonas putidal

>dlzyma_ 3.5.1.2.1 N-terminal domain of enzyme I of the
PEP:sugar phosphotransferase system [Escherichia coli]
>ditml__ 3.2.1.1.1 Cellulase E2 [Thermomonospora fusca,

strain yx]

class 4

>d1531__ 4.2.1.4.1 Lysozyme [GooseAnser anser anser]

>d4rhn__ 4.10.1.1.1 Histidine triad nucleotide-binding protein
(HINT) [rabbit oryctolagus cuniculus]

>didar_3 4.11.1.1.1 (403-525) Elongation factor G (EF-G),
domain IV [Thermus thermophilus]

>dligd__ 4.12.1.1.1 Immunoglobulin-binding protein G, separate

domains [group G streptococcus (Streptomyces griseus)]

90



class 5

>dihcl__ 5.1.1.1.1 Cyclin-dependent PK [Human (Homo sapiens)]
>d3pte__ 5.4.1.1.1 D-ala carboxypeptidase/transpeptidase
[streptomyces R61]

>d1kfd_2 5.9.1.1.1 (196-560) DNA polymerase I (Klenov fragment)
(Escherichia coli]

>dimml__ 5.9.1.2.1 MMLV reverse transcriptase [Moloney murine

leukemia virus)]
class 7

>diomc__ 7.3.5.1.1 omega-Conotoxin [sea snail Conus geographus

G IVal

>dliva__ 7.3.5.2.1 omega-Agatoxin IV, IVa, IVb [funnel web spider
(Agelenopsis aperta)l

>d2sn3__ 7.3.6.1.1 scorpion toxin [Centruroides sculpturatus
ewing, variant 3]

>dimtx__ 7.3.6.2.1 Margatoxin [scorpion (Centruroides

margaritatus)]

B.3 Training data for specific matrix: SCOP

class 1

>digrj_1 1.2.1.1.1 (1-78) GreA transcript cleavage protein,
N-terminal domain [Escherichia colil

>dletpal 1.3.1.3.1 (1-92) Cytochrome c4 [Pseudomonas stutzeril
>dlenh__ 1.4.1.1.1 engrailed Homeodomain [Drosophila

melanogaster]

91



>dihcra_ 1.4.1.2.1 HIN recombinase (DNA-binding domain)
[synthetic]

>dlhsta_ 1.4.3.7.1 Histone H5, globular domain [chicken
(Gallus gallus)]

>diflia_ 1.4.3.9.1 Fli-1 [Human (Homo sapiens)]

>dihks__ 1.4.3.10.1 Heat-shock transcription factor
[Drosophila melanogaster]

>dlebdc_ 1.9.1.1.1 E3-binding domain of dihydrolipoamide
acetyltransferase [Bacillus stearothermophilus]

>dlerc__ 1.10.1.1.1 ER-1 [Euplotes raikovi]

>ditafa_ 1.21.1.3.1 TAFii42 [Fruit fly (Drosophila
melanogaster)]

>dimmog_ 1.22.1.1.1 Methane monooxygenase hydrolase, gamma
subunit [Methylococcus capsulatus]

>dilpe__ 1.23.1.1.1 Apolipoprotein E3 [human (Homo sapiens)]
>divtmp_ 1.23.5.1.1 Tobacco mosaic virus coat protein [tobacco
mosaic virus (Vulgare strain)]

>dlacp__ 1.26.1.1.1 Acyl carrier protein [Escherichia coli]
>dlcei__ 1.26.2.1.1 ImmE7 protein [Escherichia coli]
>dlan2a_ 1.33.1.1.1 Max protein [mouse (Mus musculus)]
>dicnpa_ 1.34.1.2.1 Calcyclin (S100) [Rabbit (Oryctolagus
cuniculus)]

>dlkjs__ 1.40.1.1.1 C5a anaphylotoxin [human (Homo sapiens)]

B.4 Testing data for specific matrix: SCOP

class 1

>dihyp__ 1.42.1.1.1 Soybean hydrophobic protein [soybean
(Glycine max)]

92



>dlihfa_ 1.46.1.1.1 Integration host factor (IHF)
[Escherichia colil

>divolal 1.59.1.2.1 (1-95) Transcription factor IIB (TFIIB),
the core domain [Human (Homo sapiens)]

>d1lla_1 1.70.1.1.1 (1-359) Hemocyanin, N-terminal and middle
domains [Limulus polyphemus]

>dlutg__ 1.72.1.1.1 Uteroglobin [Rabbit (Oryctolagus
cuniculus)]

>dicsh__ 1.74.1.1.1 Citrate synthase [chicken (Gallus gallus)]
>dirgp__ 1.83.1.1.1 p50 RhoGAP domain [human (Homo sapiens)]
>d2sblbl 1.85.1.1.1 (125-807) Lipoxigenase, C-terminal domain
[Soybean (Glycine max), isozyme L1]

>dlpoa__ 1.95.1.2.1 Snake phospholipase A2 [taiwan cobra
(Naja naja atra)l

>dirtmil 1.97.1.1.1 (1-32) Mannose-binding protein A,

triple coiled-coil domain [rat (Rattus rattus)]

>d2ztaa_ 1.97.2.1.1 GCN4 [Yeast Saccharomyces cerevisiae]
>d1ifj__ 1.97.3.1.1 Inovirus (filamentous phage) major coat

protein [strain fd]

B.5 Training data for specific matrix: SCOP
class 3

>dipkm_2 3.1.9.1.1 (1-104,207-384) Pyruvate kinase, N-terminal
domain [cat muscle (Felis domestica)]

>d2myr__ 3.1.1.4.1 Myrosinase [white mustard (Sinapis alba)]
>diakz__ 3.11.1.1.1 Uracil-DNA glycosylase [Human

(Homo sapiens)]

>dipii_1 3.1.8.1.1 (1-254) N-(5’phosphoribosyl)antranilate

93



(PRA)isomerase [Escherichia coli]

>dihvg__ 3.1.1.5.1 Hevamine A (chitinase/lysozyme) [Para
rubber tree Hevea brasiliensis]

>dimucal 3.1.6.2.1 (119-360) Muconate-lactonizing enzyme
[Pseudomonas putidal

>ditml__ 3.2.1.1.1 Cellulase E2 [Thermomonospora fusca,

strain yx]

>dlzyma_ 3.5.1.2.1 N-terminal domain of enzyme I of the
PEP:sugar phosphotransferase system [Escherichia coli]
>dinzya_ 3.8.1.1.1 4-Chlorobenzoyl-CoA dehalogenase
[Pseidomonas sp. strain CBS-3]

>dlpau.1 3.10.1.1.1 (a,b) Apopain [Human (Homo sapiens)]
>discual 3.13.3.1.1 (122-288) Succinyl-CoA synthetase,
alpha-chain, C-terminal domain [Escherichia coli]

>d2nacal 3.13.9.1.1 (1-147,336-374) Formate dehydrogenase
[Pseudomonas sp. 101]

>difnb_2 3.14.1.1.1 (137-296) Ferredoxin reductase [spinach
(Spinacia oleracea)]

>digpmal 3.15.2.1.1 (206-380) GMP synthetase, central domain
[Escherichia coli]

>d2naca2 3.19.1.4.1 (148-335) Formate dehydrogenase
[Pseudomonas sp. 101]

>dlyvei2 3.19.1.6.1 (1-225) Acetohydroxy acid isomeroreductase,
ketoacid reductoisomerase (KARI) [spinach (Spinacia oleracea)]
>dlhrdal 3.19.1.7.1 (195-449) Glutamate dehydrogenase,
C-terminal domain [Clostridium symbiosum]

>dipydal 3.21.1.1.1 (173-341) Pyruvate decarboxylase [brewer’s

yeast (Saccharomyces) uvarum strain]

94



B.6 Testing data for specific matrix: SCOP
class 3

>dipyda2 3.24.1.1.1 (1-172) Pyruvate decarboxylase [brewer’s
yeast (Saccharomyces) uvarum strain]

>dlgky__ 3.25.1.1.1 Guanylate kinase [baker’s yeast
(Saccharomyces cerevisiae)]

>d5p21__ 3.25.1.3.1 cH-p21 Ras protein [human (Homo sapiens)]
>d2mysa2 3.25.1.4.1 (1-28,70-669) Myosin S1, motor domain
[chicken (Gallus gallus) pectoral muscle]

>dildts__ 3.25.1.5.1 Dethiobiotin synthetase [Escherichia coli]
>d2reb_1 3.25.1.6.1 (1-243) RecA protein, ATPase-domain
[Escherichia coli]

>d2sece_ 3.28.1.1.1 Subtilisin Carlsberg [Bacillus subtilis]
>d3cla__ 3.30.1.1.1 Chloramphenicol acetyltransferase
[Escherichia colil

>d2hnp__ 3.32.1.2.1 Tyrosine phosphatase [Human (Homo
sapiens) 1B]

>d2trxa_ 3.33.1.1.1 Thioredoxin [Escherichia coli]

>d1ldsba2 3.33.1.3.1 (1-64,129-188) Disulphide-bond formation
facilitator (DSBA) [Escherichia coli]

>d2gsta2 3.33.1.5.1 (1-84) Glutathione S-transferase [rat
(Rattus rattus)]

95



=

ES EBE=3

E=

==

r

B

96



Appendix C

Glossary

Amino acid: Any of a class of 20 molecules that are combined to form
proteins in living things. The sequence of amino acids in a protein and hence

protein function are determined by the genetic code.

Base pair (bp): Two nitrogenous bases (adenine and thymine or guanine
and cytosine) held together by weak bonds. Two strands of DNA are held
together in the shape of a double helix by the bonds between base pairs.

Base sequence: The order of nucleotide bases in a DNA molecule.

Biotechnology: A set of biological techniques developed through basic re-
search and now applied to research and product development. In particular,
the use by industry of recombinant DNA, cell fusion, and new bioprocessing

techniques.

Chromosomes: The self-replicating genetic structures of cells containing
the cellular DNA that bears in its nucleotide sequence the linear array of
genes. In prokaryotes, chromosomal DNA is circular, and the entire genome

is carried on one chromosome. Eukaryotic genomes consist of a number of

97



chromosomes whose DNA is associated with different kinds of proteins.
Codon: See genetic code.

Conserved sequence: A base sequence in a DNA molecule (or an amino
acid sequence in a protein) that has remained essentially unchanged through-

out evolution.

DNA (deoxyribonucleic acid): The molecule that encodes genetic in-
formation. DNA is a double-stranded molecule held together by weak bonds
between base pairs of nucleotides. The four nucleotides in DNA contain the
bases: adenine (A), guanine (G), cytosine (C), and thymine (T). In nature,
base pairs form only between A and T and between G and C; thus the base

sequence of each single strand can be deduced from that of its partner.

DNA sequence: The relative order of base pairs, whether in a fragment of

DNA, a gene, a chromosome, or an entire genome.

Domain: A discrete portion of a protein with its own function. The com-

bination of domains in a single protein determines its overall function.

Double helix: The shape that two linear strands of DNA assume when

bonded together.

Enzyme: A protein that acts as a catalyst, speeding the rate at which a
biochemical reaction proceeds but not altering the direction or nature of the

reaction.

Gene: The fundamental physical and functional unit of heredity. A gene
is an ordered sequence of nucleotides located in a particular position on a

particular chromosome that encodes a specific functional product (i.e., a

98



protein or RNA molecule).

Gene expression: The process by which a genes coded information is con-
verted into the structures present and operating in the cell. Expressed genes
include those that are transcribed into mRNA and then translated into pro-
tein and those that are transcribed into RNA but not translated into protein

(e.g., transfer and ribosomal RNAs).

Gene product: The biochemical material, either RNA or protein, resulting
from expression of a gene. The amount of gene product is used to measure
how active a gene is; abnormal amounts can be correlated with disease-

causing alleles.

Genetic code: The sequence of nucleotides, coded in triplets (codons) along
the mRNA, that determines the sequence of amino acids in protein synthesis.
The DNA sequence of a gene can be used to predict the mRNA sequence,

and the genetic code can in turn be used to predict the amino acid sequence.

Genome: All the genetic material in the chromosomes of a particular or-

ganism; its size is generally given as its total number of base pairs.

Homologies: Similarities in DNA or protein sequences between individuals

of the same species or among different species.

In vitro: Outside a living organism (or in the test tube).

In vivo: Inside a living organism.

Nucleic acid: A large molecule composed of nucleotide subunits.

Nucleotide: A subunit of DNA or RNA consisting of a nitrogenous base

(adenine, guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or

99



cytosine in RNA), a phosphate molecule, and a sugar molecule (deoxyribose
in DNA and ribose in RNA). Thousands of nucleotides are linked to form a
DNA or RNA molecule. See DNA, base pair, RNA.

Protein: A large molecule composed of one or more chains of amino acids in
a specific order; the order is determined by the base sequence of nucleotides in
the gene coding for the protein. Proteins are required for the structure, func-
tion, and regulation of the bodys cells, tissues, and organs, and each protein

has unique functions. Examples are hormones, enzymes, and antibodies.

Ribonucleic acid (RNA): A chemical found in the nucleus and cytoplasm
of cells; it plays an important role in protein synthesis and other chemical
activities of the cell. The structure of RNA is similar to that of DNA. There
are several classes of RNA molecules, including messenger RNA, transfer
RNA, ribosomal RNA, and other small RNAs, each serving a different pur-

pose.

Ribosomes: Small cellular components composed of specialised ribosomal

RNA and protein; site of protein synthesis. See ribonucleic acid (RNA).

Sequencing: Determination of the order of nucleotides (base sequences) in

a DNA or RNA molecule or the order of amino acids in a protein.

Transcription: The synthesis of an RNA copy from a sequence of DNA (a

gene); the first step in gene expression. Compare translation.

Transfer RNA (tRNA): A class of RNA having structures with triplet
nucleotide sequences that are complementary to the triplet nucleotide coding
sequences of mRNA. The role of tRNAs in protein synthesis is to bond with
amino acids and transfer them to the ribosomes, where proteins are assembled

according to the genetic code carried by mRNA.

100



Translation: The process in which the genetic code carried by mRNA dir-

ects the synthesis of proteins from amino acids.

Virus: A noncellular biological entity that can reproduce only within a host
cell. Viruses consist of nucleic acid covered by protein; some animal viruses
are also surrounded by membrane. Inside the infected cell, the virus uses the

synthetic capability of the host to produce progeny virus.

101



—— P s R | — s Bl B = | i B el B B B3 Ea BB EE




